SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Siegmund Heike) "

Search: WFRF:(Siegmund Heike)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andrén, Margareta, et al. (author)
  • Coupling between mineral reactions, chemical changes in groundwater, and earthquakes in Iceland
  • 2016
  • In: Journal of Geophysical Research - Solid Earth. - 2169-9313 .- 2169-9356. ; 121:4, s. 2315-2337
  • Journal article (peer-reviewed)abstract
    • Chemical analysis of groundwater samples collected from a borehole at Hafralækur, northernIceland, from October 2008 to June 2015 revealed (1) a long-term decrease in concentration of Si and Naand (2) an abrupt increase in concentration of Na before each of two consecutive M > 5 earthquakes whichoccurred in 2012 and 2013, both 76 km from Hafralækur. Based on a geochemical (major elements and stableisotopes), petrological, and mineralogical study of drill cuttings taken from an adjacent borehole, we areable to show that (1) the long-term decrease in concentration of Si and Na was caused by constant volumereplacement of labradorite by analcime coupled with precipitation of zeolites in vesicles and along fracturesand (2) the abrupt increase of Na concentration before the first earthquake records a switchover tononstoichiometric dissolution of analcime with preferential release of Na into groundwater. We attributedecay of the Na peaks, which followed and coincided with each earthquake to uptake of Na along fracturedor porous boundaries between labradorite and analcime crystals. Possible causes of these Na peaks are anincrease of reactive surface area caused by fracturing or a shift from chemical equilibrium caused by mixingbetween groundwater components. Both could have been triggered by preseismic dilation, which was alsoinferred in a previous study by Skelton et al. (2014). The mechanism behind preseismic dilation so far from thefocus of an earthquake remains unknown.
  •  
2.
  • Skelton, Alasdair, et al. (author)
  • Changes in groundwater chemistry before two consecutive earthquakes in Iceland
  • 2014
  • In: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 7:10, s. 752-756
  • Journal article (peer-reviewed)abstract
    • Groundwater chemistry has been observed to change before earthquakes and is proposed as a precursor signal. Such changes include variations in radon count rates(1,2), concentrations of dissolved elements(3-5) and stable isotope ratios(4,5). Changes in seismicwave velocities(6), water levels in boreholes(7), micro-seismicity(8) and shear wave splitting(9) are also thought to precede earthquakes. Precursor activity has been attributed to expansion of rock volume(7,10,11). However, most studies of precursory phenomena lack sufficient data to rule out other explanations unrelated to earthquakes(12). For example, reproducibility of a precursor signal has seldom been shown and few precursors have been evaluated statistically. Here we analyse the stable isotope ratios and dissolved element concentrations of groundwater taken from a borehole in northern Iceland between 2008 and 2013. We find that the chemistry of the groundwater changed four to six months before two greater than magnitude 5 earthquakes that occurred in October 2012 and April 2013. Statistical analyses indicate that the changes in groundwater chemistry were associated with the earthquakes. We suggest that the changes were caused by crustal dilation associated with stress build-up before each earthquake, which caused different groundwater components to mix. Although the changes we detect are specific for the site in Iceland, we infer that similar processes may be active elsewhere, and that groundwater chemistry is a promising target for future studies on the predictability of earthquakes.
  •  
3.
  • Skelton, Alasdair, et al. (author)
  • Hydrochemical Changes Before and After Earthquakes Based on Long-Term Measurements of Multiple Parameters at Two Sites in Northern IcelandA Review
  • 2019
  • In: Journal of Geophysical Research - Solid Earth. - 2169-9313 .- 2169-9356. ; 124:3, s. 2702-2720
  • Research review (peer-reviewed)abstract
    • Hydrochemical changes before and after earthquakes have been reported for over 50years. However, few reports provide sufficient data for an association to be verified statistically. Also, no mechanism has been proposed to explain why hydrochemical changes are observed far from earthquake foci where associated strains are small (<10(-8)). Here we address these challenges based on time series of multiple hydrochemical parameters from two sites in northern Iceland. We report hydrochemical changes before and after M >5 earthquakes in 2002, 2012, and 2013. The longevity of the time series (10 and 16years) permits statistical verification of coupling between hydrochemical changes and earthquakes. We used a Student t test to find significant hydrochemical changes and a binomial test to confirm association with earthquakes. Probable association was confirmed for preseismic changes based on five parameters (Na, Si, K, O-18, and H-2) and postseismic changes based on eight parameters (Ca, Na, Si, Cl, F, SO4, O-18, and H-2). Using concentration ratios and stable isotope values, we showed that (1) gradual preseismic changes were caused by source mixing, which resulted in a shift from equilibrium and triggered water-rock interaction; (2) postseismic changes were caused by rapid source mixing; and (3) longer-term hydrochemical changes were caused by source mixing and mineral growth. Because hydrochemical changes occur at small earthquake-related strains, we attribute source mixing and water-rock interaction to microscale fracturing. Because fracture density and size scale inversely, we infer that mixing of nearby sources and water-rock interaction are feasible responses to small earthquake-related strains. Plain Language Summary Changes in groundwater chemistry before and after earthquakes have been reported for over 50years. However, few studies have been able to prove that the earthquakes caused these changes. Also, no study has explained why these changes are often reported far from where the earthquake occurred. Here we address these challenges based on measurements of groundwater chemistry made at two sites in northern Iceland over time periods of 10 and 16years. We used statistical methods to prove that the earthquakes caused changes of ground water chemistry both before and after the earthquakes. We showed that changes of groundwater chemistry before earthquakes were caused by slow mixing between different groundwaters, which triggered reactions with the wall rock that changed groundwater chemistry, and that changes of groundwater chemistry after earthquakes were causes by rapid mixing between different groundwaters. That these changes were detected far from where the earthquakes occurred suggests that cracking of the wall rock at a very small scale was all that was needed for mixing of different groundwaters and reactions with the wall rock to occur.
  •  
4.
  • Skelton, Alasdair, et al. (author)
  • Stable isotopes of oxygen and hydrogen in meteoric water during the Cryogenian Period
  • 2019
  • In: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 320, s. 253-260
  • Journal article (peer-reviewed)abstract
    • We measured delta O-18 and delta H-2 values of muscovite and carbonate mineral separates from metamorphosed carbonate -bearing mudstone layers in late Tonian to early Cryogenian strata, including Sturtian glacial deposits, which were deposited in a coastal setting at an approximate paleolatitude of 30-35 degrees S and now crop out on Islay and the Garvellach Islands, Scotland. From these values, we calculated delta O-18 and delta H-2 values of meteoric water that equilibrated with clay at diagenetic conditions which we infer were reached shortly after deposition (i.e. before the end of the Cryogenian Period) because sediment accumulation was rapid due to fast subsidence at that time. This calculation required removal of the effects of exchange with reservoir rocks, metamorphic volatilization and mixing with metamorphic fluids on delta O-18 and delta H-2 values. The values we calculated for meteoric water fall within the 2 sigma ranges delta O-18 = 1 to -4 parts per thousand and delta H-2 = 0 to -23-parts per thousand, respectively. These ranges are similar to present day values at equivalent latitudes. This finding is consistent with sediment accumulation in the Cryogenian Period having occurred in a climate similar to present day (Ice Age) conditions. This conclusion is not at odds with the Snowball Earth hypothesis because one of its predictions is that sediment accumulation occurred as the climate warmed at the end of panglaciation, a prediction supported by sedimentological evidence of multiple glacial advances and retreats in our study area and elsewhere.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view