SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sihver Lembit 1962) "

Sökning: WFRF:(Sihver Lembit 1962)

  • Resultat 1-50 av 133
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akrawy, Dashty T., et al. (författare)
  • New empirical formula for calculating (n, p) reaction cross-sections at 14.5 MeV neutrons
  • 2020
  • Ingår i: International Journal of Modern Physics E. - 0218-3013. ; 29:8
  • Forskningsöversikt (refereegranskat)abstract
    • An empirical formula to calculate the (n, p) reaction cross-sections for 14.5 MeV neutrons for 183 target nuclei in the range 44 ≤ A ≤ 212 is presented. Evaluated cross-section data from TENDL nuclear data library were used to test and benchmark the formula. In this new formula, the nonelastic cross-section term is replaced by the atomic number Z, while the asymmetry parameter-dependent exponential term has been retained. The calculated results are presented in comparison with the seven previously published formulae. We show that the new formula is significantly in better agreement with the measured values compared to previously published formulae.
  •  
2.
  • Akrawy, Dashty T., et al. (författare)
  • α-decay half-lives new semi-empirical relationship including asymmetry, angular momentum and shell effects
  • 2022
  • Ingår i: Nuclear Physics A. - : Elsevier BV. - 0375-9474. ; 1021
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a modified version of the semi-empirical formula SemFIS, which is based on the fission theory for predicting the alpha decay half-lives. The first version of SemFIS was found by D. N. Poenaru et al. and was at that time the best formula to predict the alpha-decay half-lives of superheavy nuclei among 18 different existing models. We compare a modified version of SemFIS against the old version and experimental data for four groups of alpha emitters: even-even; even-odd; odd-even, and odd-odd parent nuclei. Two sets of experimental values are used: set A, and set B. There are 356 nuclides in set A [137 e-e, 90 e-o, 66 o-e, and 63 o-o with Zmin, Zmax of (52,118); (52,112); (63,117), and (53,117), and Amin, Amax of (108,294); (107,281); (147,293), and (110,294), respectively]. Set B includes 420 α-emitters [144 e-e, 112 e-o, 84 o-e, and 80 o-o] with Zmin, Zmax of (52,118); (52,116); (53,117), and (53,117), and Amin, Amax of (106,294); (105,293);(111,293) and (110,294)]. Our study shows that the modified version of SemFIS gives better agreements with the experimental data than previously published versions.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Ambrozova, I., et al. (författare)
  • Measurement of target fragments produced by 160 MeV proton beam in aluminum and polyethylene with CR-39 plastic nuclear track detectors
  • 2014
  • Ingår i: Radiation Measurements. - : Elsevier BV. - 1350-4487. ; 64, s. 29-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Production of target fragments from reactions of 160 MeV proton beams in aluminum and polyethylene was measured with CR-39 plastic nuclear track detectors (PNTD). Due to the detection limit of PNTD, primary protons cannot be detected; only low-energy short-range target fragments are registered. As a feasibility study, a so called "two step etching method" was employed to get the linear energy transfer (LET) spectra, absorbed dose, and dose equivalent. This method is discussed in this paper, together with the measured results. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
9.
  • Bertucci, Antonella, et al. (författare)
  • Shielding of relativistic protons
  • 2007
  • Ingår i: Radiation and Environmental Biophysics. - : Springer Science and Business Media LLC. - 1432-2099 .- 0301-634X. ; 46:2, s. 107-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick ( about 20 g/cm(2)) blocks of lucite (PMMA) or aluminium ( Al). We found that the dose rate was increased 40-60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation Weld after the shield has been characterized for its biological eVectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.53 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (
  •  
10.
  •  
11.
  • Casolino, M., et al. (författare)
  • The altcriss project on board the International Space Station
  • 2007
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 1879-1948 .- 0273-1177. ; 40:11, s. 1746-1753
  • Tidskriftsartikel (refereegranskat)abstract
    • The Alteriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is to perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above similar or equal to 60 MeV/n. Several passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO in the Life and Physical Science of 2004 and data taking began in December 2005. Dosimeters and data cards are rotated every 6 months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end of expedition 12 and 13. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR.
  •  
12.
  • El-Jaby, S., et al. (författare)
  • ISSCREM: International Space Station cosmic radiation exposure model
  • 2013
  • Ingår i: IEEE Aerospace Conference Proceedings. - 1095-323X. - 9781467318112
  • Konferensbidrag (refereegranskat)abstract
    • A semi-empirical model is derived from operational data collected aboard the International Space Station (ISS) with the U.S. tissue equivalent proportional counter (TEPC). The model provides daily and cumulative mission predictions of the operational dose equivalent that space-crew may receive from galactic cosmic radiation (GCR) and trapped radiation (TR) sources as a function of the ISS orbit. The parametric model for GCR exposure correlates the TEPC dose equivalent rate to the cutoff rigidity at ISS altitudes while the TR parametric model relates this quantity to the mean atmospheric density at the crossing of the South Atlantic Anomaly (SAA). The influences of solar activity, flux asymmetry inside the SAA, detector orientation, and position aboard the ISS on the dose equivalent have been examined. The model has been successfully benchmarked against measured data for GCR and TR exposures to within ±10% and ±20%, respectively, over periods of time ranging from a single day to a full mission. In addition, preliminary estimates of the protection quantity of effective dose equivalent have been simulated using the PHITS Monte Carlo transport code. These simulations indicate that the TEPC dose equivalent is a conservative estimate of the effective dose equivalent.
  •  
13.
  • El-Jaby, S., et al. (författare)
  • Method for the prediction of the effective dose equivalent to the crew of the International Space Station
  • 2014
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 1879-1948 .- 0273-1177. ; 53:5, s. 810-817
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. Measurements made with a tissue equivalent proportional counter (TEPC) located at Service Module panel 327, as captured through a semi-empirical correlation in the ISSCREM code, where then scaled using this conversion factor for prediction of the effective dose equivalent. This analysis shows that at this location within the service module, the total effective dose equivalent is 10-30% less than the total TEPC dose equivalent. Approximately 75-85% of the effective dose equivalent is derived from the OCR. This methodology provides an opportunity for pre-flight predictions of the effective dose equivalent and therefore offers a means to assess the health risks of radiation exposure on ISS flight crew. Crown copyright (C) 2014 Published by Elsevier Ltd. on behalf of COSPAR. All rights reserved.
  •  
14.
  • Fogelberg, B., et al. (författare)
  • Decays of 134Sn and 134Sb
  • 1990
  • Ingår i: Physical Review. ; :C41, s. R1890-
  • Tidskriftsartikel (refereegranskat)
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Golovchenko, A. N., et al. (författare)
  • Fragmentation of 370 MeV/n Ne-20 and 470 MeV/n Mg-24 in light targets
  • 2010
  • Ingår i: Radiation Measurements. - : Elsevier BV. - 1350-4487. ; 45:7, s. 856-860
  • Tidskriftsartikel (refereegranskat)abstract
    • Total charge-changing cross sections and cross sections for the production of projectile-like fragments were determined for fragmentation reactions induced by 370 MeV/n Ne-20 ions in water and lucite, and 490 MeV/n Mg-24 ions in polyethylene, carbon and aluminum targets sandwiched with CR-39 plastic nuclear track detectors. An automated microscope system and a track-to-track matching algorithm were used to count and recognize the primary and secondary particles. The measured cross sections were then compared with published cross sections and predictions of different models. Two models and the three-dimensional Monte Carlo Particle Heavy Ion Transport Code System (PHITS) were used to calculate total charge-changing cross sections. Both models agreed within a few percent for the system Mg-24 + CH2, however a deviation up to 20% was observed for the systems Ne-20 + H2O and C5H8O2, when using one of the models. For all the studied systems, PHITS systematically underestimated the total charge-changing cross section. It was also found that the partial fragmentation cross sections for Mg-24 + CH2 measured in present and earlier works deviated up to 20% for Z = 6-11. Measured cross sections for the production of fragments (Z = 4-9) for Ne-20 + H2O and C5H8O2 were compared with predictions of three different semi-empirical models and JQMD which is used in the PHITS code. The calculated cross sections differed from the measured data by 10-90% depending on which fragment and charge was studied, and which model was used. (C) 2010 Elsevier Ltd. All rights reserved.
  •  
20.
  • Gustafsson, Katarina, 1980, et al. (författare)
  • PHITS simulations of the Matroshka experiment
  • 2010
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 1879-1948 .- 0273-1177. ; 46:10, s. 1266-1272
  • Tidskriftsartikel (refereegranskat)abstract
    • The radiation environment in space is very different from the one encountered on Earth. In addition to the sparsely ionizing radiation, there are particles of different Z with energies ranging from keV up to hundreds of GeV which can cause severe damage to both electronics and humans. It is therefore important to understand the interactions of these highly ionizing particles with different materials such as the hull of space vehicles, human organs and electronics. We have used the Particle and Heavy-Ion Transport code System (PHITS), which is a three-dimensional Monte Carlo code able to calculate interactions and transport of particles and heavy ions with energies up to 100 GeV/nucleon in most matter. PHITS is developed and maintained by a collaboration between RIST (Research Organization for Information Science & Technology), JAEA (Japan Atomic Energy Agency), KEK (High Energy Accelerator Research Organization), Japan and Chalmers University of Technology, Sweden. For the purpose of examining the applicability of PHITS to the shielding design we have simulated the ESA facility Matroshka (MTR) designed and lead by the German Aerospace Center (DLR). Preliminary results are presented and discussed in this paper.
  •  
21.
  •  
22.
  • Hayatsu, K., et al. (författare)
  • Lunar radiation dose due to cosmic rays and their secondary particles
  • 2010
  • Ingår i: 61st International Astronautical Congress 2010, IAC 2010.Prague, 27 September-1 October 2010. - 9781617823688 ; 5, s. 4084-4088
  • Konferensbidrag (refereegranskat)abstract
    • To be able to safely perform human activities on the lunar surface, it is very important to assess the radiation environment, including the dose from galactic cosmic Rays (GCRs) and large Solar Energetic Particles (SEPs). Especially, large SPEs are highly hazardous to lunar habitants. In this paper, several SPEs have been evaluated in order to estimate the effective dose equivalent on the lunar surface. Several events give more than 1 Sv without any shield.
  •  
23.
  •  
24.
  •  
25.
  • Kodaira, S., et al. (författare)
  • On the use of CR-39 PNTD with AFM analysis in measuring proton-induced target fragmentation particles
  • 2015
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. - : Elsevier BV. - 0168-583X. ; 349, s. 163-168
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to energy loss by ionization process, protons of energy >similar to 50 MeV, such as those used in proton radiotherapy, can undergo nuclear interactions with nuclei of Z > 1, resulting in the production, of short range (<20 gm), high-LET (linear energy transfer) target fragment particles. One of the few methods to detect these short-range particles is by means of CR-39 plastic nuclear track detector (PNTD) analyzed with an atomic force microscope (AFM). However, due to the LET-dependent angular sensitivity of CR-39 PNTD, multiple detectors exposed at a range of incident angles to the primary proton beam, must be analyzed in order to accurately determine the LET spectrum, absorbed dose and dose equivalent. The LET spectrum of 160 MeV proton-induced secondary particles was experimentally measured with CR-39 PNTDs, which were exposed at six different incident angles to take into account the intrinsic sensitivity of the critical angle for track registration. The irradiated detectors were chemically processed to remove a 1 gm thick volume of CR-39 PNTD. The measured LET range of short range tracks was from 15 key/mu m up to 1.5 MeV/mu m. The absorbed dose contribution (D-s/D-p) from secondary particles to primary proton dose was similar to 1%, while the dose equivalent contribution (H-s/D-p) was found to be similar to 20%. Analysis of CR-39 PNTD by AFM yielded similar to 60% higher value for absorbed dose compared to standard optical microscopy analysis.
  •  
26.
  • Koliskova, Z., et al. (författare)
  • Simulations of absorbed dose on the phantom surface of MATROSHKA-R experiment at the ISS
  • 2012
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 1879-1948 .- 0273-1177. ; 49:2, s. 230-236
  • Tidskriftsartikel (refereegranskat)abstract
    • The health risks associated with exposure to various components of space radiation are of great concern when planning manned long-term interplanetary missions, such as future missions to Mars. Since it is not possible to measure the radiation environment inside of human organs in deep space, simulations based on radiation transport/interaction codes coupled to phantoms of tissue equivalent materials are used. However, the calculated results depend on the models used in the codes, and it is therefore necessary to verify their validity by comparison with measured data. The goal of this paper is to compare absorbed doses obtained in the MATROSHKA-R experiment performed at the International Space Station (ISS) with simulations performed with the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS). The absorbed dose was measured using passive detectors (packages of thermoluminescent and plastic nuclear track detectors) placed on the surface of the spherical tissue equivalent phantom MATROSHKA-R, which was exposed aboard the ISS in the Service Zvezda Module from December 2005 to September 2006. The data calculated by PHITS assuming an ISS shielding of 3 g/cm(2) and 5 g/cm(2) aluminum mass thickness were in good agreement with the measurements. Using a simplified geometrical model of the ISS, the influence of variations in altitude and wall mass thickness of the ISS on the calculated absorbed dose was estimated. The uncertainties of the calculated data are also discussed; the relative expanded uncertainty of absorbed dose in phantom was estimated to be 44% at a 95% confidence level.
  •  
27.
  • La Tessa, Chiara, 1979, et al. (författare)
  • Fragmentation of 1 GeV/nucleon iron ions in thick targets relevant for space exploration
  • 2005
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 1879-1948 .- 0273-1177. ; 35:2, s. 223-229
  • Tidskriftsartikel (refereegranskat)abstract
    • We have measured charged nuclear fragments produced by 1 GeV/nucleon 56 Fe ions interacting with aluminium, polyethylene and lead. These materials are relevant for assessment of radiation risk for manned space flight. The data will be presented in a form suitable for comparison with models of nuclear fragmentation and transport, including linear energy transfer (LET) spectrum, fluence for iron and fragments, event-tack- and even t-dose-averaged LET, total dose and iron contribution to dose.
  •  
28.
  • La Tessa, Chiara, 1979, et al. (författare)
  • Test of weak and strong factorization in nucleus-nucleus collisions at several hundred MeV/nucleon
  • 2007
  • Ingår i: Nuclear Physics A. - : Elsevier BV. - 0375-9474. ; 791:3-4, s. 434-450
  • Tidskriftsartikel (refereegranskat)abstract
    • Projectile total and partial charge-changing cross sections have been measured for argon ions at 400 MeV/nucleon in carbon, aluminum, copper, tin and lead targets; cross sections for hydrogen were also obtained using a polyethylene target. The validity of weak and strong factorization properties has been investigated for partial charge-changing cross sections; measurements obtained for carbon, neon and silicon beams at 290 and 400 MeV/nucleon and iron beam at 400 MeV/nucleon, in carbon, aluminum, copper, tin and lead targets have also been used for the test. Two different analysis methods were applied and both indicated that these properties are valid, without any significant difference between weak and strong factorization. The factorization parameters have then been calculated and analyzed in order to find some systematic behavior useful for modeling purposes. (C) 2007 Elsevier B.V. All rights reserved.
  •  
29.
  •  
30.
  •  
31.
  • Larsson, Irina, 1975, et al. (författare)
  • Factors influencing helium measurements for detection of control rod failures in BWR
  • 2012
  • Ingår i: International Conference on the Physics of Reactors 2012: Advances in Reactor Physics (PHYSOR 2012), Knoxville, TN;15- 20 April 2012. - 9781622763894 ; 4, s. 3092-3099
  • Konferensbidrag (refereegranskat)abstract
    • Much effort has been made to minimize the number and consequences of fuel failures at nuclear power plants. The consequences of control rod failures have also gained an increased attention. In this paper we introduce a system for on-line surveillance of control rod integrity which has several advantages comparing to the surveillance methods available today in boiling water reactors (BWRs). This system measures the helium released from failed control rods containing boron carbide (B4C). However, there are a number of factors that might influence measurements, which have to be taken into consideration when evaluating the measured data. These factors can be separated into two groups: 1) local adjustments, made on the sampling line connecting the detector to the off-gas system, and 2) plant operational parameters. The adjustments of the sample line conditions include variation of gas flow rate and gas pressure in the line. Plant operational factors that may influence helium measurements can vary from plant to plant. The factors studied at Leibstadt nuclear power plant (KKL) were helium impurities in injected hydrogen gas, variation of the total off-gas flow and regular water refill. In this paper we discuss these factors and their significance and present experimental results of measurements at KKL.
  •  
32.
  • Larsson, Irina, 1975, et al. (författare)
  • Improvements of fuel failure detection in boiling water reactors using helium measurements
  • 2012
  • Ingår i: International Congress on Advances in Nuclear Power Plants 2012, ICAPP 2012. - 9781622762101 ; 4, s. 2401-2406
  • Konferensbidrag (refereegranskat)abstract
    • To certify a continuous and safe operation of a boiling water reactor, careful surveillance of fuel integrity is of high importance. The detection of fuel failures can be performed by off-line gamma spectroscopy of off-gas samples and/or by on-line nuclide specific monitoring of gamma emitting noble gases. To establish the location of a leaking fuel rod, power suppression testing can be used. The accuracy of power suppression testing is dependent on the information of the delay time and the spreading of the released fission gases through the systems before reaching the sampling point. This paper presents a method to improve the accuracy of power suppression testing by determining the delay time and gas spreading profile. To estimate the delay time and examine the spreading of the gas in case of a fuel failure, helium was injected in the feed water system at Forsmark 3 nuclear power plant. The measurements were performed by using a helium detector system based on a mass spectrometer installed in the off-gas system. The helium detection system and the results of the experiment are presented in this paper.
  •  
33.
  • Larsson, Irina, 1975, et al. (författare)
  • On-line monitoring of control rod integrity in BWRs using a mass spectrometer
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 698, s. 249-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Surveillance of fuel and control rod integrity in the core of a boiling water reactor is essential for maintaining a safe and reliable operation. Control rods of a boiling water reactor are mainly filled with boron carbide as a neutron absorber. Due to the irradiation of boron with neutrons, a continuous production of lithium and helium will occur inside a control rod. Most of the created helium will be retained in the boron carbide lattice; however a small part will escape into the void volume of the control blade. Therefore the integrity of control rods during operation can efficiently be followed by on-line measurements of helium concentration in the reactor off-gas system using a mass spectrometer. Since helium is a fill gas in fuel rods, the same method is a useful early warning system for primary fuel failures. In this paper, we introduce an on-line helium detector system which is installed at the nuclear power plant in Leibstadt. Furthermore the measuring experiences of control rod failure detection at the plant are presented. Different causes of increased helium levels in the off-gas system have been distinguished. There are spontaneous helium releases as well as helium releases caused by changed conditions in the reactor (power reduction, control rod movement, etc.). Helium peaks can also be characterized according to the released amount of helium, the peak shape and the duration of the release, which leads to different interpretations of the release mechanisms. In addition, the measured amount of released helium from a 50 days period (280 l) is also compared to the calculated amount of produced helium from the washed out boron during the same time period (190 l). © 2012 Elsevier B.V.
  •  
34.
  • Larsson, Irina, 1975, et al. (författare)
  • Qualification of helium measurement system for detection of fuel failures in a BWR
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 745, s. 24-37
  • Tidskriftsartikel (refereegranskat)abstract
    • There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (M(L) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KM. by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at Forsmark NPP during the test period were detected; neither with the helium measurement system nor with the system for the measuring the gamma emitting noble fission gases. Possible reasons for that are discussed in the paper. The experiences with helium measurements for detection of fuel failures are still limited since the helium detector has only been in operation for two years at Forsmark NPP and for four years at Leibstadt nuclear power plants. Further studies are therefore needed to optimize these systems. (C) 2014 Elsevier B.V. All rights reserved.
  •  
35.
  • Li, Q. A., et al. (författare)
  • Therapeutic techniques applied in the heavy-ion therapy at IMP
  • 2011
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. - : Elsevier BV. - 0168-583X. ; 269:7, s. 664-670
  • Tidskriftsartikel (refereegranskat)abstract
    • Superficially-placed tumors have been treated with carbon ions at the Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), since November 2006. Up to now, 103 patients have been irradiated in the therapy terminal of the heavy ion research facility in Lanzhou (HIRFL) at IMP, where carbon-ion beams with energies up to 100 MeV/u can be supplied and a passive beam delivery system has been developed and commissioned. A number of therapeutic and clinical experiences concerning heavy-ion therapy have been acquired at IMP. To extend the heavy-ion therapy project to deep-seated tumor treatment, a horizontal beam line dedicated to this has been constructed in the cooling storage ring (CSR), which is a synchrotron connected to the HIRFL as an injector, and is now in operation. Therapeutic high-energy carbon-ion beams, extracted from the HIRFL-CSR through slow extraction techniques, have been supplied in the deep-seated tumor therapy terminal. After the beam delivery, shaping and monitoring devices installed in the therapy terminal at HIRFL-CSR were validated through therapeutic beam tests, deep-seated tumor treatment with high-energy carbon ions started in March 2009. The therapeutic techniques in terms of beam delivery system, conformal irradiation method and treatment planning used at IMP are introduced in this paper.
  •  
36.
  •  
37.
  •  
38.
  • Luoni, F., et al. (författare)
  • Total nuclear reaction cross-section database for radiation protection in space and heavy-ion therapy applications
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:10
  • Forskningsöversikt (refereegranskat)abstract
    • Realistic nuclear reaction cross-section models are an essential ingredient of reliable heavy-ion transport codes. Such codes are used for risk evaluation of manned space exploration missions as well as for ion-beam therapy dose calculations and treatment planning. Therefore, in this study, a collection of total nuclear reaction cross-section data has been generated within a GSI-ESA-NASA collaboration. The database includes the experimentally measured total nucleus-nucleus reaction cross-sections. The Tripathi, Kox, Shen, Kox-Shen, and Hybrid-Kurotama models are systematically compared with the collected data. Details about the implementation of the models are given. Literature gaps are pointed out and considerations are made about which models fit best the existing data for the most relevant systems to radiation protection in space and heavy-ion therapy.
  •  
39.
  • Maeyama, T., et al. (författare)
  • Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-2: Effects of nuclear fragmentation and its simulation with PHITS
  • 2011
  • Ingår i: Radiation Physics and Chemistry. - : Elsevier BV. - 1879-0895 .- 0969-806X. ; 80:12, s. 1352-1357
  • Tidskriftsartikel (refereegranskat)abstract
    • The G(OH) values in aqueous coumarin-3-carboxylic-acid (3-CCA) solutions irradiated with (12)C(6+) beams having the energies of 135, 290 and 400 MeV/u were measured by a fluorescent method around the Bragg peak, with 0.6 mm intervals, and quartz cells of 1 cm optical lengths, at the Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences (NIRS). For each ion, the G(OH) has been calculated as a function of dose average LET and position. The calculated results have been compared to measurements, and the results, reproducibility and reliability of the calculations are discussed in the paper.
  •  
40.
  • Mancusi, Davide, 1980, et al. (författare)
  • Calculation of Energy-Deposition Distributions and Microdosimetric Estimation of the Biological Effect of a 9C Beam
  • 2009
  • Ingår i: Radiation and Environmental Biophysics. - 1432-2099 .- 0301-634X. ; 48:2, s. 135-143
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the alternative beams being recently considered for external cancer radiotherapy, C-9 has received some attention because it is expected that its biological effectiveness could be boosted by the beta-delayed emission of two alpha particles and a proton that takes place at the ion-stopping site. Experiments have been performed to characterise this exotic beam physically and models have been developed to estimate quantitatively its biological effect. Here, the particle and heavy-ion transport code system (PHITS ) is used to calculate energy-deposition and linear energy transfer distributions for a C-9 beam in water and the results are compared with published data. Although PHITS fails to reproduce some of the features of the distributions, it suggests that the decay of C-9 contributes negligibly to the energy-deposition distributions, thus contradicting the previous interpretation of the measured data. We have also performed a microdosimetric calculation to estimate the biological effect of the decay, which was found to be negligible; previous microdosimetric Monte-Carlo calculations were found to be incorrect. An analytical argument, of geometrical nature, confirms this conclusion and gives a theoretical upper bound on the additional biological effectiveness of the decay. However, no explanation can be offered at present for the observed difference in the biological effectiveness between C-9 and C-12; the reproducibility of this surprising result will be verified in coming experiments.
  •  
41.
  • Mancusi, Davide, 1980, et al. (författare)
  • Comparison of aluminum and lucite for shielding against 1 GeV protons
  • 2007
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 1879-1948 .- 0273-1177. ; 40:4, s. 581-585
  • Tidskriftsartikel (refereegranskat)abstract
    • Shielding is the only countermeasure currently available for exposure to cosmic radiation during space travel. We compared aluminum (Al) and polymethylmethacrylate (PMMA, or lucite) shields of 20 g/cm^2 thickness using 1 GeV protons accelerated at the NASA Space Radiation Laboratory. The dose rate increased after the shield, and the increase was more pronounced after the Al than the PMMA shield. No significant differences in the induction of chromosomal aberrations were observed in human lymphocytes exposed to the same dose with no shield or behind the Al and PMMA blocks. However, the biological effectiveness per incident proton was increased by the shields. Simulations using the General-Purpose Particle and Heavy-Ion Transport Code System (PHITS) show that the increase in dose is caused by target fragments, and aluminum produces more secondary protons than PMMA. Nevertheless, the spectrum of particles behind the shield is confined within the low-LET region, and the biological effectiveness is consequently similar.
  •  
42.
  • Mancusi, Davide, 1980, et al. (författare)
  • PHITS - benchmark of partial charge-changing cross sections for intermediate-mass systems
  • 2007
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. - : Elsevier BV. - 0168-583X. ; 254:1, s. 30-38
  • Tidskriftsartikel (refereegranskat)abstract
    • The PHITS (Particle and Heavy Ion Transport System) code is a three-dimensional Monte Carlo code that is able to simulate the transport of nuclei and other particles in complicated geometries and calculate fluxes, doses, energy-deposition distributions and many other observables. Among its many possible fields of application, it can be used e.g. to design and optimise radiation shields for space vessels. However, the reliability of the predictions of the code depends directly on the certified accuracy of the code components, i.e. the models the code uses to estimate the quantities necessary for the transport calculation. As a part of a comprehensive benchmarking program, we have investigated the possibility of using PHITS to calculate partial charge-changing cross sections and we have compared the results with measurements performed by some of us (CZ, LH, JM, SG). The results, although limited, suggest that the current reaction-cross-section models might be inadequate for use in space radioprotection; we therefore claim the need for a thorough benchmarking of the models and for new reaction-cross-section measurements and experimental techniques.
  •  
43.
  • Mancusi, Davide, 1980, et al. (författare)
  • Stability of Nuclei in Peripheral Collisions in the JAERI Quantum Molecular Dynamics Model
  • 2009
  • Ingår i: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993. ; 79:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The JAERI quantum molecular dynamics (JQMD) model has been successfully used for a long time now to describe many different aspects of nuclear reactions in a unified way. In some cases, however, the JQMD model cannot produce consistent results: First, it lacks a fully relativistically covariant approach to the problem of molecular dynamics; second, the quantum-mechanical ground state of nuclei cannot be faithfully reproduced in a semiclassical framework. Therefore, we introduce R-JQMD, an improved version of JQMD that also features a new ground-state initialization algorithm for nuclei. We compare the structure of the two codes and discuss whether R-JQMD can be adjusted to improve JQMD's agreement with measured heavy-ion fragmentation cross sections.
  •  
44.
  • Matthia, D., et al. (författare)
  • Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:8, s. A08104 (art no)-
  • Tidskriftsartikel (refereegranskat)abstract
    • The solar energetic particle event on 20 January 2005 was one of the largest ground level events ever observed. Neutron monitor stations in the Antarctic recorded count rate increases of several thousand percent caused by secondary energetic particles, and it took more than 36 h to return to background level. Such huge increases in high energetic solar cosmic radiation on the ground are obviously accompanied by considerable changes in the radiation environment at aviation altitudes. Measurements of 28 neutron monitor stations were used in this work to numerically approximate the primary solar proton spectra during the first 12 h of the event by minimizing the differences between measurements and the results of Monte-Carlo calculated count rate increases. The primary spectrum of solar energetic protons was approximated by a power law in rigidity and a linear angular distribution. The incoming direction of the solar energetic particles was determined and compared to the interplanetary magnetic field direction during the event. The effects on the radiation exposure at altitudes of about 12 km during that time were estimated to range from none at low latitudes up to almost 2 mSv/h for a very short time in the Antarctic region and about 0.1 mSv/h at high latitudes on the Northern Hemisphere. After 12 h, dose rates were still increased by 50% at latitudes above 60 degrees whereas no increases at all occurred at latitudes below 40 degrees during the whole event.
  •  
45.
  •  
46.
  • Matthiä, Daniel, et al. (författare)
  • The Ground Level Event 70 on December 13th, 2006 and Related Effective Doses at Aviation Altitudes
  • 2009
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 136:4, s. 304-310
  • Tidskriftsartikel (refereegranskat)abstract
    • The 70th ground level event in the records of the Neutron Monitor network occurred on 13 December 2006 reaching a maximum count rate increase at the Oulu station of more than 90% during the 5 min interval 3.05-3.10 UTC. Thereafter, count rates gradually decreased registering increases of a few per cent above the galactic cosmic ray background after a few hours. The primary proton spectrum during the first 6 h after the onset of the event is characterised in this work by fitting the energy and angular distribution by a power law in rigidity and a linear dependence in the pitch angle using a minimisation technique. The results were obtained by analysing the data from 28 Neutron Monitor stations. At very high northern and southern latitudes, the effective dose rates were estimated to reach values of 25-30 mu Sv h(-1) at atmospheric depth of 200 g cm(-2) during the maximum of the event. The increase in effective dose during north atlantic and polar flights was estimated to be in the order of 20 %.
  •  
47.
  • Mortazavi, S. A.R., et al. (författare)
  • Can Reactivation of SARS-CoV-2 Decrease the Chance of Success of Future Deep Space Missions?
  • 2021
  • Ingår i: IEEE Aerospace Conference Proceedings. - 1095-323X. ; 2021-March
  • Konferensbidrag (refereegranskat)abstract
    • Korean CDC experts first reported the likelihood of reactivation in COVIOD-19 patients. They hypothesized that like childhood chicken pox infections which lie dormant for tens of years only to cause shingles in seniors, SARS-CoV-2 can reactivate. However, as testing for the virus had been flawed at that time, U.S. infectious disease experts were skeptical about the reports of second COVID-19 infections. New reports have addressed the urgent need to conduct large-scale studies to better understand the potential recurrence of SARS-CoV-2 in COVID-19 patients. Moreover, some case studies show possible reactivation of SARS-CoV-2 in a family cluster. Given this consideration, major space stressors such as microgravity and space radiation and their interactions which are not fully known, so far can increase the risk of reactivation of SARS-CoV-2 in future space missions, an event that can easily impact the success of any space mission. Since about 80% of infected people are either asymptomatic or show only mild symptoms, in a near future, it would be likely that astronauts who start their mission even after complex medical examinations, experience reactivation of the virus during their mission. Moreover, we have previously addressed the potential higher fatality of COVID-19 infections in space due to 1) uselessness of social distancing due to microgravity 2) immune system dysregulation 3) possibly higher mutation rates of the novel coronavirus (SARS-CoV-2) as a RNA virus 4) higher risk of reactivation of the virus 5) existence of strong selective pressure and 6) decreased maximum oxygen uptake.
  •  
48.
  • Mortazavi, S. M. J., et al. (författare)
  • Can Adaptive Response and Evolution Make Survival of Extremophile Bacteria Possible on Mars?
  • 2020
  • Ingår i: 2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020). - 1095-323X. - 9781728127347
  • Konferensbidrag (refereegranskat)abstract
    • The humidity on the surface of the red planet, Mars, drops steeply during the daytime as the temperature rises. In this situation, Martian microorganisms should have the capability to cope with desiccation. Extremophiles are microorganisms that are capable of surviving in extreme environmental conditions. It has previously been shown that a pre-exposure to low levels of either ionizing or non-ionizing radiation can induce resistance against subsequent exposure to high levels of different stressors (e.g. high doses of ionizing radiation) in a wide variety of living systems. Moreover, it has been shown that E. coli bacteria repeatedly exposed to a dose needed for 1% survival, and increasing the dose each time due to increased radioresistance for the same survival (1%), generates extremely radioresistant bacteria through directed evolution. Mortazavi et al. have warned that in a similar manner with extremophiles such as Deinococcus radiodurans, it would be very likely that this type of human-directed radioresistance makes E. coli bacteria resistant to all physical and chemical agents (generation of serious life-threatening micro-organisms). There are reports about the possibility of the existence of microbes in the salty puddles of Mars. On Mars, with its thin atmosphere and lack of the protective magnetic field, higher levels of space radiation cause more genetic mutations. Interestingly, these mutations in bacteria, which can make them resistant against radiation, can also make them resistant against desiccation. Moreover, the adaptive response to radiation in bacteria might play an important role in this process. As stated in a NASA report, the cells in the astronauts will be traversed by multiple protons before exposure to HZE particles. This sequential exposure might significantly increase the resistance against radiation. The same exposure in bacteria might not only induce resistance against the high levels of damage caused by HZEs, but also to other life-threatening factors for bacteria such as desiccation. In this paper, the current understanding of extremophiles and their capability of surviving in extreme environmental conditions as well as current findings about radioadaptive responses in bacteria will be discussed.
  •  
49.
  • Mortazavi, S. M. J., et al. (författare)
  • Does Exposure of Astronauts' Brains to High-LET Radiation in Deep Space Threaten the Success of the Mission?
  • 2020
  • Ingår i: 2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020). - 1095-323X. - 9781728127347
  • Konferensbidrag (refereegranskat)abstract
    • Astronauts' exposure to radiation is different from exposure to radiation on Earth. Besides cancer, cardiovascular disease and acute radiation syndrome, there are concerns over the potential behavioral and cognitive impairments caused by exposure of the astronauts' central nervous system to high levels of space radiation. Therefore, potential behavioral and cognitive i mpairments caused by astronauts' brains exposure to high levels of space radiation and the possibility of developing dementia and other motor neuron diseases are getting more attention. As NASA is interested in studies on radium deposition in human brain, and exposure of the brain to high linear energy transfer (LET) alpha particles, we have assessed the cognitive effects of long-term exposure of human brain to alpha particles which partly mimics astronauts' exposure to high charge and energy (HZE) particles during upcoming mars missions. Dr. John Boice, President of NCRP, and his colleagues' have stated that human brain exposed for years to alpha particles on Earth may be more relevant to a Mars mission in contrast with the mouse brain exposed to heavy ions for a few minutes. Interestingly, both Boice and NASA did not pay enough attention to this fact that radium as well as many other alpha emitters tend to accumulate in the bone, and the alpha particles whose energies are typically -5 MeV have a very short range (maximum lOs of um), so the radiation dose due to the alpha emitters would be localized to volumes near the cranium rather than being uniformly distributed throughout the cerebral and cerebellar parenchyma. Extraordinary high levels of Ra-226 have previously been reported in high background radiation areas of Ramsar, where people are consuming locally grown foods. In this paper, we will present data which provide a human brain radiation exposure analogue for upcoming Mars missions. Normally the dose to the functional parts of the brain are not likely to be significant, even with higher uptakes of the radium or other alpha-emitting isotopes in the cranium. Therefore, only residents with calcium-rich diet were selected for the study. Measurements of background gamma radiation was performed in their bedrooms, dining rooms, vegetable yards and gardens with citrus fruit trees of the dwellings in areas with high levels of Ra-226 in the soil and at a nearby control area with the same socio-economic factors. Moreover, the food frequency, reaction time, working memory and computational abilities as well as the Radium Ingestion Index (RII) of 47 participants (22 males and 24 females) from the hot areas, where the annual radiation absorbed dose from background radiation is up to 260 mSv/y, were studied, and the same things were studied for 17 participants (4 males and 13 females) from a nearby normal background radiation area with the same socioeconomic factors as at the hot areas. Our study showed that exposure of human brain to high LET particles did not affect the working memory. However, individuals with higher levels of radium ingestion had significantly increased reaction times. The increased reaction time in individuals with higher exposure levels to alpha particles emitted from ingested Ra-226 is an important finding, since similar conditions might occur in deep space, when astronauts' brain cells are exposed to HZE particles. As the astronauts face numerous challenges in isolated and confined space environment, they should be able to respond quickly to different hazards. However, further studies are needed to verify if the fmdings in high radiation dose areas in Ramsar are relevant for deep space mission.
  •  
50.
  • Mortazavi, S. M. J., et al. (författare)
  • Radioadaptation of Astronauts' Microbiome and Bodies in a Deep Space Mission to Mars and Beyond
  • 2020
  • Ingår i: 2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020). - 1095-323X. - 9781728127347
  • Konferensbidrag (refereegranskat)abstract
    • During manned space missions, humans will be accompanied by microorganisms. This prompts us to study the characteristics of bacteria grown in space [1]. It has been shown that a pre-exposure to low levels of either ionizing or non-ionizing radiation can make microorganisms more resistant not only to high doses of ionizing radiation but to any factor that threatens their survival (e.g. antibiotics) [2,3]. This phenomenon that is called "adaptive response" (i.e. increased resistance in living organisms pre-exposed to a low level stressor such as a low dose of ionizing radiation) [4] significantly increases the risk of serious infections in deep space missions. It's worth noting that both animal and human data confirm the disruption of the immune system during spaceflight [5]. In addition, the virulence of bacteria can also be increased significantly in space [4], hence this kind of adaptive response which increases the resistance of bacteria can endanger the astronauts' lives in space. On the other hand, A NASA report notes that as astronauts' cells will be exposed to multiple protons before being traversed by HZE particles, they can show adaptive responses. Given this consideration, it would be realistic to expect co-radioadaptation of astronauts' microbiome and their body in a deep space journey to Mars and beyond. The complexity of these phenomena and current uncertainties, which highlight the need for further studies before any long-term manned mission, will be discussed in this paper.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 133

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy