SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simoncig A.) "

Sökning: WFRF:(Simoncig A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borne, Kurtis D., et al. (författare)
  • Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane
  • 2024
  • Ingår i: NATURE CHEMISTRY. - 1755-4330 .- 1755-4349. ; 16, s. 499-505
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
  •  
2.
  • Makos, I., et al. (författare)
  • Attosecond photoelectron spectroscopy using high-harmonic generation and seeded free-electron lasers
  • 2023
  • Ingår i: 2023 Photonics North, PN 2023. - 9798350326734
  • Konferensbidrag (refereegranskat)abstract
    • In this work, we use attosecond time-resolved techniques to investigate photoionization dynamics on its natural timescale, employing both high harmonic generation and seeded free-electron lasers to generate extreme ultraviolet attosecond pulse trains for our studies. With the former approach, we examine the role of nuclear motion in molecular photoionization dynamics, while with the latter we introduce a novel attosecond timing tool for single-shot characterization of the relative phase between the XUV and the infrared field.
  •  
3.
  • Maroju, Praveen Kumar, et al. (författare)
  • Attosecond coherent control of electronic wave packets in two-colour photoionization using a novel timing tool for seeded free-electron laser
  • 2023
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 17, s. 200-207
  • Tidskriftsartikel (refereegranskat)abstract
    • In ultrafast spectroscopy, the temporal resolution of time-resolved experiments depends on the duration of the pump and probe pulses, and on the control and characterization of their relative synchronization. Free-electron lasers operating in the extreme ultraviolet and X-ray spectral regions deliver pulses with femtosecond and attosecond duration in a broad array of pump-probe configurations to study a wide range of physical processes. However, this flexibility, together with the large dimensions and high complexity of the experimental set-ups, limits control of the temporal delay to the femtosecond domain, thus precluding a time resolution below the optical cycle. Here we demonstrate a novel single-shot technique able to determine the relative synchronization between an attosecond pulse train-generated by a seeded free-electron laser-and the optical oscillations of a near-infrared field, with a resolution of one atomic unit (24 as). Using this attosecond timing tool, we report the first example of attosecond coherent control of photoionization in a two-colour field by manipulating the phase of high-order near-infrared transitions.
  •  
4.
  • Perosa, G., et al. (författare)
  • Femtosecond Polarization Shaping of Free-Electron Laser Pulses
  • 2023
  • Ingår i: Physical Review Letters. - 0031-9007. ; 131:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with timedependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrodinger equation. The stability limit of the scheme is mainly set by electron-beam energy fluctuations, however, at a level that will not compromise experiments in the XUV. Our results demonstrate the potential to improve the resolution and element selectivity of methods based on polarization shaping and may lead to the development of new coherent control schemes for probing and manipulating core electrons in matter.
  •  
5.
  • Žitnik, M., et al. (författare)
  • Atomic two-color XUV interferometer
  • 2023
  • Ingår i: 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023. - 9798350345995
  • Konferensbidrag (refereegranskat)abstract
    • We extend our recently published work which demonstrated the coherent control of population of 2s21S doubly excited state in helium by tuning the interference of ω1 + ω1 and ω3 − ω1 two-photon excitation paths [1]. The maximum yield of electrons from 2s2 autoionization was observed when the two-color phase difference matched phase difference of the atomic amplitudes describing the two alternative excitation paths. A displacement of position of the maximum yield in the same reference frame therefore signals the presence of an additional phase shifting agent along any of the two paths and also provides a measure of the corresponding phase shift. This constitutes the operational principle of an atomic XUV interferometer which is comparable to the well-known RABBITT method based on using a combination of XUV and IR light pulses [2]. The work was performed at LDM beamline at the free-electron-laser facility FERMI in Trieste (Italy). The phase difference of the two components of the light pulse was set by slightly delaying the ω3 emission from the last three undulators with respect to the ω1 emission produced by the first three undulators and this was achieved by delaying the generating electron bunch by properly adjusted magnetic chicane in between the two undulator sections.
  •  
6.
  • Pop, Mihai, et al. (författare)
  • Single-shot transverse coherence in seeded and unseeded free-electron lasers: A comparison
  • 2022
  • Ingår i: Physical Review Accelerators and Beams. - 2469-9888. ; 25:040701
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of x-ray free-electron lasers (FELs) drastically enhanced the capabilities of several analytical techniques, for which the degree of transverse (spatial) coherence of the source is essential. FELs can be operated in self-amplified spontaneous emission (SASE) or seeded configurations, which rely on a qualitatively different initialization of the amplification process leading to light emission. The degree of transverse coherence of SASE and seeded FELs has been characterized in the past, both experimentally and theoretically. However, a direct experimental comparison between the two regimes in similar operating conditions is missing, as well as an accurate study of the sensitivity of transverse coherence to key working parameters. In this paper, we carry out such a comparison, focusing in particular on the evolution of coherence during the light amplification process.
  •  
7.
  • Uhl, D., et al. (författare)
  • Extreme Ultraviolet Wave Packet Interferometry of the Autoionizing HeNe Dimer
  • 2022
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 13:36, s. 8470-8476
  • Tidskriftsartikel (refereegranskat)abstract
    • Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant interatomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process. A Fourier analysis reveals the molecular absorption spectrum with high resolution. The demonstrated experiment shows a promising route for the real-time analysis of ultrafast ICD processes with both high temporal and high spectral resolution. © 2022 American Chemical Society.
  •  
8.
  • Zitnik, M., et al. (författare)
  • Interference of two-photon transitions induced by XUV light
  • 2022
  • Ingår i: Optica. - : Optica Publishing Group. - 2334-2536. ; 9:7, s. 692-700
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative phase of first (omega(1)) and third harmonics (omega(3)) extreme ultraviolet light pulses was varied to control the population of the 2s(2) state in helium through the interference of omega(1) + omega(1) and omega(3) - omega(1) two-photon excitation paths. The population was monitored by observing the total electron yield due to the 2s(2) autoionization decay. Maximum yield occurs when the relative phase of the two harmonics matches the phase difference of complex atomic amplitudes governing the two excitation paths. The calculated trend of atomic phase differences agrees well with the measured data in the spectral region of the resonance, provided that time-reversed -omega(1) + omega(3) path is also taken into account. These results open the way to accessing phase differences of two-photon ionization paths involving energetically distant intermediate states and to perform interferometry in the extreme ultraviolet range by monitoring final state populations. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy