SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simonsson Kjell Professor) "

Sökning: WFRF:(Simonsson Kjell Professor)

  • Resultat 1-27 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Håkan, 1970- (författare)
  • A Co-Simulation Tool Applied to Hydraulic Percussion Units
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this dissertation, a co-simulation tool is presented that is meant to comprise a more comprehensive environment for modelling and simulation of hydraulic percussion units, which are used in hydraulic hammers and rock drills. These units generates the large impact forces, which are needed to demolish concrete structures in the construction industry or to fragment rock when drilling blast holes in mine drifting. This type of machinery is driven by fluid power and is by that dependent of coupled fluid-structure mechanisms for their operation. This tool consists of a 1D fluid system model, a 3D structural mechanic model and an interface to establish the fluid-structure couplings, which has in this work been applied to a hydraulic hammer. This approach will enable virtual prototyping during product development with an ambition to reduce the need for testing of physical prototypes, but also to facilitate more detailed studies of internal mechanisms. The tool has been implemented for two well-known simulation tools, and a co-simulation interface to enable communication between them has been devel-oped. The fluid system is simulated using the Hopsan simulation tool and the structural parts are simulated using the FE-simulation software LS-DYNA. The implementation of the co-simulation interface is based on the Functional Mock-up Interface standard in Hopsan and on the User Defined Feature module in LS-DYNA. The basic functions of the tool were first verified for a simple but relevant model comprising co-simulation of one component, and secondly co-simulation of two components were verified. These models were based on rigid body and linear elastic representation of the structural components. Further, it was experimentally validated using an existing hydraulic hammer product, where the responses from the experiments were compared to the corresponding simulated responses. To investigate the effects from a parameter change, the hammer was operated and simulated at four different running conditions. Dynamic simulation of the sealing gap, which is a fundamental mechanism used for controlling the percussive motion, was implemented to further enhance the simulated responses of the percussion unit. This implementation is based on a parametrisation of the deformed FE-model, where the gap height and the eccentric position are estimated from the deformed geometry in the sealing gap region, and then the parameters are sent to the fluid simulation for a more accurate calculation of the leakage flow. Wear in percussion units is an undesirable type of damage, which may cause significant reduction in performance or complete break-down, and today there are no methodology available to evaluate such damages on virtual prototypes. A method to study wear was developed using the co-simulation tool to simulate the fundamental behaviour of the percussion unit, and the wear routines in LS-DYNA were utilised for the calculation of wear.  
  •  
2.
  • Azeez, Ahmed, 1991- (författare)
  • High-Temperature Durability Prediction of Ferritic-Martensitic Steel
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Materials used for high-temperature steam turbine sections are generally subjected to harsh environments with temperatures up to 625 °C. The superior creep resistance of 9–12 % Cr ferritic-martensitic steels makes them desirable for those critical steam turbine components. Additionally, the demand for fast and frequent steam turbine start-ups, i.e. flexible operations, causes accelerated fatigue damage in critical locations, such as grooves and notches, at the high-temperature inner steam turbine casing. A durability assessment is necessary to understand the material behaviour under such high temperatures and repeated loading, and it is essential for life prediction. An accurate and less conservative fatigue life prediction approach is achieved by going past the crack initiation stage and allowing controlled growth of cracks within safe limits. Besides, beneficial load-temperature history effects, i.e. warm pre-stressing, must be utilised to enhance the fracture resistance to cracks. This dissertation presents the high-temperature durability assessment of FB2 steel, a 9-12 % Cr ferritic-martensitic steam turbine steel.Initially, isothermal low-cycle fatigue testing was performed on FB2 steel samples. A fatigue life model based on finite element strain range partitioning was utilised to predict fatigue life within the crack initiation phase. Two fatigue damage regimes were identified, i.e. plastic- and creep-dominated damage, and the transition between them depended on temperature and applied total strain. Cyclic deformation and stress relaxation behaviour were investigated to produce an elastic-plastic and creep material model that predicts the initial and mid-life cyclic behaviour of the FB2 steel.Furthermore, the thermomechanical fatigue crack growth behaviour of FB2 steel was studied. Crack closure behaviour was observed and accounted for numerically and experimentally, where crack growth rate curves collapsed into a single curve. Interestingly, the collapsed crack growth curves coincided with isothermal crack growth tests performed at the minimum temperature of the thermomechanical crack growth tests. In addition, hold times and changes in the minimum temperature of the thermomechanical fatigue cycle did not influence crack closure behaviour.Finally, warm pre-stressing effects were explored for FB2 steel. A numerical prediction model was produced to predict the increase in the apparent fracture toughness. Warm pre-stressing effects can benefit the turbine life by enhancing fracture resistance and allowing longer fatigue cracks to grow within safe limits.
  •  
3.
  • Azeez, Ahmed, 1991- (författare)
  • High-Temperature Fatigue in a Steam Turbine Steel : Modelling of Cyclic Deformation and Crack Closure
  • 2021
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Existing conventional thermal power plants are retrofitted for flexible operations to assist the transition toward more renewable energies. The deployment of many renewable energy power plants is necessary to achieve a clean environment with less pollution. However, the intermittent nature of renewable energies, due to weather changes, and the lack of efficient large energy storage systems put renewables at a disadvantage. Flexible operations of power plants imply fast and frequent start-ups. Thus, retrofitted power production plants can be utilised as an energy backup to satisfy the immediate demand during peak energy times or when renewable energies are suddenly limited. Large thermal power plants generally employ steam turbines with high inlet temperature and pressure steam conditions. Materials used for components at the high-temperature turbine sections are expected to withstand harsh environments. The use of 9-12 % Cr martensitic steels is desirable due to, among other things, their superior resistance to creep for temperatures up to 625 °C. Retrofitting for flexible operations put steam turbine components under high-temperature fatigue loading conditions different from how they were designed before. The flexible operations could lead to fatigue cracking at critical locations, such as grooves and notches at the inner steam turbine casing. Thus, fatigue behaviour understanding of steam turbine materials under such loading conditions is essential for components life prediction. Accurate and less conservative fatigue life prediction approach is necessary to extend the turbine components life, which reduces waste and provides economic benefits. This can be done by extending operations past crack initiation phase and allowing controlled propagation of cracks in the components. Within the 9-12 % Cr steel class, the martensitic steam turbine steel called FB2 is studied under high-temperature fatigue. This includes investigating high-temperature fatigue life behaviour, cyclic deformation behaviour, stress relaxation behaviour, and crack propagation behaviour along with crack closure behaviour. This was achieved by experimentally testing samples made from FB2 steel under isothermal low cycle fatigue, isothermal fatigue crack propagation, and thermomechanical fatigue crack propagation. 
  •  
4.
  • Gustafsson, David, 1983- (författare)
  • Constitutive and fatigue crack propagation behaviour of Inconel 718
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this licentiate thesis the work done in the TURBO POWER project Influence of high temperature hold times on the fatigue life of nickel-based superalloys will be presented. The overall objective of this project is to develop and evaluate tools for designing against fatigue in gas turbine applications, with special focus on the nickel-based superalloy Inconel 718. Firstly, the constitutive behaviour of the material has been been studied, where focus has been placed on trying to describe the mean stress relaxation and initial softening of the material under intermediate temperatures. Secondly, the fatigue crack propagation behaviour under high temperature hold times has been studied. Focus has here been placed on investigating the main fatigue crack propagation phenomena with the aim of setting up a basis for fatigue crack propagation modelling.This thesis is divided into two parts. The first part describes the general framework, including basic constitutive and fatigue crack propagation behaviour as well as a theoretical background for the constitutive modelling of mean stress relaxation. This framework is then used in the second part, which consists of the four included papers.
  •  
5.
  • Kapidzic, Zlatan, 1978- (författare)
  • Static and Fatigue Failure of Bolted Joints in Hybrid Composite-Aluminium Aircraft Structures
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The use of fibre composites in the design of load carrying aircraft structures has been increasing over the last few decades. At the same time, aluminium alloys are still present in many structural parts, which has led to an increase of the number of hybrid composite-aluminium structures. Often, these materials are joined at their interface by bolted connections. Due to their different response to thermal, mechanical and environmental impact, the composite and the aluminium alloy parts are subject to different design and certification practices and are therefore considered separately.The current methodologies used in the aircraft industry lack well-developed methods to account for the effects of the mismatch of material properties at the interface.One such effect is the thermally induced load which arises at elevated temperature due to the different thermal expansion properties of the constituent materials. With a growing number of hybrid structures, these matters need to be addressed. The rapid growth of computational power and development of simulation tools in recent years have made it possible to evaluate the material and structural response of hybrid structures without having to entirely rely on complex and expensive testing procedures.However, as the failure process of composite materials is not entirely understood, further research efforts are needed in order to develop reliable material models for the existing simulation tools.The work presented in this dissertation involves modelling and testing of bolted joints in hybrid composite-aluminium structures.The main focus is directed towards understanding the failure behaviour of the composite material under static and fatigue loading, and how to include this behaviour in large scale models of a typical bolted airframe structure in an efficient way. In addition to that, the influence of thermally induced loads on the strength and fatigue life is evaluated in order to establish a design strategy that can be used in the industrial context.The dissertation is divided into two parts. In the first one, the background and the theory are presented while the second one consists of five scientific papers.
  •  
6.
  • Lindström, Thomas, 1991- (författare)
  • Fatigue life prediction of additively manufactured ductile nickel-based superalloys : Constitutive and crack initiation modelling
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This dissertation was produced at the Division of Solid Mechanics at Linköping University, and is the final result of a project that included mechanical testing and modelling of an additively manufactured ductile nickel-based superalloy.The main objective of the work presented in this thesis was to investigate and model the cyclic behaviour and the fatigue life behaviour of an additively manufactured ductile nickel-based superalloy, with emphasis on modelling the stabilised material behaviour, by which fatigue life predictions can be based upon. The mechanical and fatigue behaviour of additively manufactured alloys have shown to often depend on how the components are manufactured in the 3D-printing machine, meaning that the material is anisotropic. This anisotropic effect is important to account for when predicting the life of components. Therefore, in this work models to predict the mechanical response and the fatigue life of such components have been established. Monotonic tensile tests, creep tests and cyclic fatigue tests at constant temperatures, as well as anisothermal cyclic tests, have been performed to investigate the mechanical and the fatigue behaviour of the material, where specimens built in different orientations have been used to also study the anisotropic behaviour of the material. With the tests as a basis, a constitutive model has progressively been developed and implemented in a finite element context that accounts for the anisotropic behaviour under both elastic and inelastic deformations. In addition, a fatigue crack initiation life model has been developed for the tested low-cycle fatigue and thermomechanical fatigue conditions, which account for both material anisotropy and temperature effects.
  •  
7.
  • Nilsson, Daniel, 1982- (författare)
  • A ΔJ approach for nonlinear fatigue crack propagation : Experimental and numerical investigation of a ductile superalloy
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This dissertation is a product of an academic-industrial collaboration between the Division of Solid Mechanics at Linköping University and Siemens Energy AB. The focus is on enhancing the design optimisation procedures for high-temperature components in industrial gas turbines (IGT). The research is centred around the behaviour of the nickelbased high-temperature superalloy Haynes 230 under service-like conditions with predominant thermal loads. The aim is to improve fatigue crack propagation life predictions for nonlinear conditions.The research findings validate the thermal ageing fatigue effects on Haynes 230 as seen in existing literature, especially on constitutive properties and crack initiation. Additionally, it was observed that thermal ageing has a minor effect on the crack growth rate up to 600 °C, which can be managed by updating the crack driving force with thermally aged properties.The project mainly focused on nonlinear crack propagation at isothermal and thermomechanical fatigue conditions. A new method for crack length description, using a modified compliance method, is introduced. This method simplifies and enhances the accuracy of crack length measurements and has become an established method for evaluating the single edge notch specimen used in the project under thermo-mechanical fatigue conditions.The nonlinear fatigue parameter ΔJ was incorporated into both Finite element method (FEM) computations and test evaluations, revealing linear trends with crack growth rates in loglog. The research highlights the crucial role of crack opening in establishing a correlation between ΔJ and crack growth rate. It was also concluded that the linear fatigue fracture parameter ΔK tends to underestimate the crack growth behaviour, resulting in non-conservative outcomes if the elasto-plastic stresses from the tests are considered.Lastly, a constitutive description of Haynes 230, based on the Ohno-Wang theory, under negligible viscoplastic effects, and an extension of the cycle jumping procedure that takes into account the significant hardening between the initial and midlife stages of the material, is presented. By this the notched geometry in 3D could be simulated with satisfying accuracy.
  •  
8.
  • Pant, Prabhat, 1990- (författare)
  • Residual Stress in Additive Manufacturing : Control using orientation and scan strategies
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Components with complex features that are designed with their function as a core aspect often are not viable to be manufactured with traditional methods. This has been a bottleneck in the past, leading to heavier parts with various sub-assemblies and a significant waste of material. With the emergence of additive manufacturing (AM) technology manufacturing of complex components has now turned into reality. Within AM, the laser-based powder-based fusion (LPBF) method is one of the most widely adopted methods to manufacture near net shape complex metal components. However, to be implemented on a larger scale various hurdles must be mitigated first.One of the main persistent issues in LPBF is of residual stresses (RS), which are formed due to repeated sequences of heating and cooling, creating a high thermal gradient between the layers. These RS can play a significant role in the component’s functionality during service, but also can affect the manufacturing process. Therefore, a detailed investigation into the formation and control of RS is of foremost importance. This thesis aims at shedding light on various aspects of the RS formation especially, the effect of build orientations and different scan strategies. For this purpose, Inconel 718 (IN718) was selected as a material for investigation due to its wide use in gas turbine components and good weldability making it a good material for additive manufacturing processes.L-shaped components and test cubes were prepared for residual stress mapping and microstructure study. The RS were measured using neutron and X-ray diffraction methods where applicable. From the investigations, it was revealed that the L-shape components built in different orientations showed significant variation in RS magnitude, but a general trend of RS distribution with tensile stresses at the surface and compressive at the bulk for all the components. A simplified finite element model for RS prediction was established and validated based on the experimental results. Similarly, the use of different scan strategies can lead to a different magnitude of RS for the L-shape components. The remelting strategy with remelting done after every 3rd printed layer seems to decrease the RS magnitude in comparison to the counterparts printed without remelting. This has also been verified with a simplified finite element simulation. The microstructure study showed that crystallographic texture can also vary with the different scan strategies and no significant preferred orientations of the grains were found with the remelting done at every 3rd printed layer. However, with the total fill strategy, strong crystallographic texture was observed in the scan direction. Further investigations into the remelting scan strategies with different variables of remelting such as power, speed, and number of layers between the remelting scan revealed an effect of the laser power in the increment of texture intensity along the building direction. A combination of chess pattern and remelting every 3rd layer decreased the RS magnitude in comparison with other samples, where parameters for remelting strategies were changed. In addition, the crystallographic texture varied with different process parameters used for the remelting. For further reduction of RS without employing post-processing, investigations into novel scan strategies need to be undertaken and at the same time texture formation also needs to be investigated.
  •  
9.
  • Aspenberg, David, 1979- (författare)
  • Robust optimisation of structures : Evaluation and incorporation of variations in simulation based design
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis concerns the robustness of structures considering various uncertainties. The overall objective is to evaluate and develop simulation based design methods in order to find solutions that are optimal both in the sense of handling typical load cases and minimising the variability of the response, i.e. robust optimal designs. Conventionally optimised structures may show a tendency of being sensitive to small perturbations in the design or loading conditions. These variations are of course inevitable. To create robust designs, it is necessary to account for all conceivable variations (or at least the influencing ones) in the design process. The thesis is divided into two parts. The first part serves as a theoretical background for this work. It includes introductions to the concept of robust design, basic statistics, optimisation theory and metamodelling. The second part consists of five appended papers on the topic.The first and third papers focuse on the evaluation of robustness, given some dispersions in the input data. Established existing methods are applied, and for paper three, comparisons with experimentally evaluated dispersions on a larger system are made.The second and fourth paper introduce two new approaches to perform robust optimisation, i.e. optimisations where the mean performance and the robustness in the objectives are simultaneously optimised. These methods are demonstrated both on an analytical example and on a Finite Element model design example. The fifth paper studies the variations in mechanical properties between several different batches of the same steel grade. A material model is fitted to each batch of material, whereby dispersions seen in test specimens are transferred to material model parameter variations. The correlations between both test and material model parameters are studied.
  •  
10.
  • Busse, Christian, 1989- (författare)
  • Modelling of Crack Growth in Single-Crystal Nickel-Base Superalloys
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This dissertation was produced at the Division of Solid Mechanics at Linköping University and is part of a research project, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys. The main objective of this work was to deepen the understanding of the fracture behaviour of single-crystal nickel-base superalloys and to develop a model to predict the fatigue crack growth behaviour. Frequently, crack growth in these materials has been observed to follow one of two distinct cracking modes; Mode I like cracking perpendicular to the loading direction or crystallographic crack growth on the octahedral {111}-planes, where the latter is associated with an increased fatigue crack growth rate. Thus, it is of major importance to account for this behaviour in component life prediction. Consequently, a model for the prediction of the transition of cracking modes and the correct active crystallographic plane, i.e. the crack path, and the crystallographic crack growth rate has been developed. This model is based on the evaluation of appropriate crack driving forces using three-dimensional finite-element simulations. A special focus was given towards the influence of the crystallographic orientation on the fracture behaviour. Further, a model to incorporate residual stresses in the crack growth modelling is presented. All modelling work is calibrated and validated by experiments on different specimen geometries with different crystallographic orientations. This dissertation consists of two parts, where Part I gives an introduction and background to the field of research, while Part II consists of six appended papers.
  •  
11.
  • Ewest, Daniel (författare)
  • Modelling and experimental evaluation of non-linear fatigue crack propagation in a ductile superalloy
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Fatigue life evaluation is an important part in the design process of an industrial gas turbine. The fatigue life can be divided into crack initiation and crack propagation, and not to address the crack propagation part usually yields a non-conservative and overcomplicated design. Historically a lot of attention has been directed towards the crack initiation, but the crack propagation part in an industrial gas turbine context has not been given the same attention due to limitations in theoretical modelling, lack of test possibilities and that the design requirements have been fulfilled within the initiation life. However, with the need to reduce service down time and to improve performance, the crack propagation life needs to be further accounted for. As an example, cracks that emerge from notches or other stress concentrations grow under non-elastic conditions, which cannot be modelled with linear theories.In this Licentiate of Engineering thesis a non-linear approach is put forward in which the plastic contribution in fatigue crack propagation is addressed and accounted for. The theoretical background is not new, but the finite element implementation done was, to the author knowledge, not available. This numerical post processing tool can calculate the non-linear ΔJ value for an arbitrary 2D-geometry. It was used to produce an expression for a non-linear geometry factor used in a simple expression for estimation of ΔJ in a test evaluation context. Room temperature tests were performed on a single notch specimen, under both displacement and force control. The latter were carried out in order to show the behaviour under small scale yielding conditions, while the displacement controlled testing was to show large scale yielding at the beginning of the tests. It was shown that all the test results could be collected in a Paris law type plot with ΔJ if the crack closure effect is taken into account. Furthermore, a study was performed where both a linear and a non-linear approach are applied on the displacement controlled tests. It was concluded that for the studied test series, the linear fatigue fracture parameter ΔK underestimates the crack growth behaviour if the elasto-plastic stresses from the tests are used, hence yielding non-conservative results.Since this project focuses on non-linear crack propagation at thermo-mechanical conditions a crack length description is put forward, which simplifies and increases the accuracy of crack length measurements in fatigue crack propagation tests. It has also been shown that irrespectively of the crack initiation location in a single edge notch specimen the data fall on one curve, meaning that no care has to be taken regarding this aspect when evaluating crack length with the modified compliance method put forward in Paper III.This Licentiate of Engineering thesis consists of two parts, where Part I gives an introduction to the subject, while Part II consists of three papers.
  •  
12.
  • Gustafsson, David, 1983- (författare)
  • High temperature fatigue crack propagation behaviour of Inconel 718
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The overall objective of this work has been to develop and evaluate tools for designing against fatigue in gas turbine applications, with special focus on the nickel-based superalloy Inconel 718. The fatigue crack propagation behaviour under high temperature hold times has been studied. Firstly, the main fatigue crack propagation phenomena have been investigated with the aim of setting up a basis for fatigue crack propagation modelling. Secondly, modelling of the observed behaviour has been performed. Finally, the constitutive behaviour of the material has been studied, where focus has been placed on trying to describe the mean stress relaxation and initial softening of the material under intermediate temperatures.This thesis is divided into two parts. The first part describes the general framework, including basic observed fatigue crack propagation behaviour of the material when subjected to hold times at high temperature as well as a background for the constitutive modelling of mean stress relaxation. This framework is then used in the second part, which consists of the seven included papers.
  •  
13.
  • Leidermark, Daniel, 1980- (författare)
  • Crystal plasticity and crack initiation in a single-crystal nickel-base superalloy : Modelling, evaluation and applications
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this dissertation the work done in the projects KME-410/502 will be presented.The overall objective in these projects is to evaluate and develop tools for designingagainst fatigue in single-crystal nickel-base superalloys in gas turbines. Experimentshave been done on single-crystal nickel-base superalloy specimens in order toinvestigate the mechanical and fatigue behaviour of the material. The constitutivebehaviour has been modelled and veried by FE-simulations of the experiments.Furthermore, the microstructural degradation during long-time ageing has been investigatedwith respect to the material's yield limit. The eect has been includedin the constitutive model by lowering the resulting yield limit. Moreover, the fatiguecrack initiation of a component has been analysed and modelled by using acritical plane approach in combination with a critical distance method. Finally, asan application, the derived single-crystal model was applied to all the individualgrains in a coarse grained specimen to predict the dispersion in fatigue crack initiationlife depending on random grain distributions.This thesis is divided into three parts. In the rst part the theoretical framework,based upon continuum mechanics, crystal plasticity, the critical plane approachand the critical distance method, is derived. This framework is then used in thesecond part, which consists of six included papers. Finally, in the third part, detailsof the used numerical procedures are presented.
  •  
14.
  • Leidermark, Daniel, 1980- (författare)
  • Modelling of constitutive and fatigue behaviour of a single-crystal nickel-base superalloy
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this licentiate thesis the work done in the project KME410 will be presented. The overall objective of this project is to evaluate and develop tools for designing against fatigue in single-crystal nickel-base superalloys in gas turbines. Experiments have been done on single-crystal nickel-base superalloy specimens in order to investigate the mechanical behaviour of the material. The constitutive behaviour has been modelled and verified by simulations of the experiments. Furthermore, the  microstructural degradation during long-time ageing has been investigated with  respect to the component’s yield limit. The effect has been included in the  constitutive model by lowering the resulting yield limit. Finally, the fatigue crack  initiation of a component has been analysed and modelled by using a critical plane approach.This thesis is divided into three parts. In the first part the theoretical framework, based upon continuum mechanics, crystal plasticity and the critical plane approach, is derived. This framework is then used in the second part, which consists of three included papers. Finally, in the third part, details are presented of the used  numerical procedures.
  •  
15.
  • Loureiro-Homs, Jordi, 1985- (författare)
  • Modelling of TMF Crack Growth in Polycrystalline Gas Turbine Alloys : Accounting for Crack Closure Effects
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The main objective of the work presented in this Licentiate of Engineering thesis is to investigate and model the fatigue crack propagation behaviour of the nickel-based superalloy Inconel 792, with special attention to the industrial lifing of high-temperature components. In-phase (IP) crack propagation tests have been performed at different temperatures and loading regimes, including extended hold times. The observations from these tests have been the basis for establishing several hypotheses to describe the crack growth behaviour, which progressively have been verified experimentally and numerically. Most prominently, it has been observed that crack closure has a substantial impact on crack growth and can explain, to a large degree, the crack growth behaviour for this material under the conditions studied. This phenomenon has been observed experimentally and modelled numerically to extend further the precision of the methodology.
  •  
16.
  • Storgärds, Erik, 1987- (författare)
  • High Temperature Fatigue Crack Growth in a Ni-based Superalloy : Modelling Including the Interaction of Dwell Times
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Safe life of gas turbines is always of major concern for manufacturers in order to ensure passenger safety and stable continuous power output. An increasing amount of resources have been put into research and development to assure that all safety aspects are covered in the design of new turbines and to ensure that enough frequent service intervals are scheduled to avoid complications. Many of these issues require good knowledge of material properties and of how to use these in the design process. Some of these relate to fatigue which is of major concern in all parts of a development programme. However, while some fatigue problems have been extensively studied, some have not. One example is crack growth with influence of dwell times at elevated temperature in combination with cyclic loading. Such loading conditions have been shown to give a different cracking behaviour compared to rapid cyclic loading, increasing the growth rate significantly with respect to the number of load cycles. Improved models for predicting this behaviour is therefore of major interest for gas turbine manufacturers, and could substantially increase the reliability. As a result, more research is needed in order  solve these problems.The work presented in this dissertation has focused on how to predict life under the above-mentioned circumstances. The materials used in high temperature gas turbine applications are often nickel-based superalloys, and in this work the most common one, Inconel 718, has been studied. Mechanical experiments have been performed under operation like conditions in order to receive material data for the subsequent modelling work. The modelling approach was chosen such that the underlying physics of the dwell time cracking have been incorporated on a phenomenological basis, creating a model which can be physically motivated as well as used for industrial applications. The main feature of the modelling work has been to track material damage which is received from dwell times, how this interacts with cyclic loading and how it affects the crack growth rate, thus creating a load history dependent model.The outcome of this work has resulted in a model which is both easy to use and which has shown to give good correlation to available experimental data. Key components such as calibration for cheap and easy parameter determination, validation on complex engine spectra loadings, three dimensional crack growth, overload influences, material scatter, thermo-mechanical fatigue crack growth and the impact of high cycle fatigue loadings, are all covered in the presented work, both as experimental findings and as continuous development of the modelling concept.The dissertation consists of two parts. In the first an introduction with the theory and background to crack growth with dwell times is given, while the second part consists of 10 papers.
  •  
17.
  • Andersson, Håkan, 1970- (författare)
  • A Co-Simulation Approach for Hydraulic Percussion Units
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This Licentiate of Engineering thesis concerns modelling and simulation of hydraulic percussion units. These units are often found in equipment for breaking or drilling in rock and concrete, and are also often driven by oil hydraulics, in which complex fluid-structure couplings are essential for their operation.Current methodologies used today when developing hydraulic percussion units are based on decoupled analyses, which are not correctly capturing the important coupled mechanisms. Hence, an efficient method for coupled simulations is of high importance, since these mechanisms are critical for the function of these units. Therefore, a co-simulation approach between a 1D system simulation model representing the fluid system and a structural 3D FE-model is proposed.This approach is presented in detail, implemented for two well-known simulation tools and evaluated for a simple but relevant model. The Hopsan simulation tool was used for the fluid system and the FE-simulation software LS-DYNA was used for the structural mechanics simulation. The co-simulation interface was implemented using the Functional Mock-up Interface-standard.The approach was further developed to also incorporate multiple components for coupled simulations. This was considered necessary when models for the real application are to be developed. The use of two components for co-simulation was successfully evaluated for two models, one using the simple rigid body representation, and a second where linear elastic representations of the structural material were implemented.An experimental validation of the co-simulation approach applied to an existing hydraulic hammer was performed. Experiments on the hydraulic hammer were performed using an in-house test rig, and responses were registered at four different running conditions. The co-simulation model was developed using the same approach as before. The corresponding running conditions were simulated and the responses were successfully validated against the experiments. A parameter study was also performed involving two design parameters with the objective to evaluate the effects of a parameter change.This thesis consists of two parts, where Part I gives an introduction to the application, the simulation method and the implementation, while Part II consists of three papers from this project.
  •  
18.
  • Busse, Christian, 1989- (författare)
  • Aspects of Crack Growth in Single-Crystal Nickel-Base Superalloys
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This Licentiate of Engineering thesis is a product of the results generated in the research project KME-702, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys.The main objective of this work is to model the fatigue crack propagation behaviour in single-crystal nickel-base superalloys. To achieve this, the influence of the crystal orientations on the cracking behaviour is assessed. The results show that the crystal orientation is strongly affecting the material response and must be accounted for. Furthermore, a linear elastic crack driving force parameter suitable for describing crystallographic cracking has been developed. This parameter is based on resolved anisotropic stress intensity factors and is able to predict the correct crystallographic cracking plane after a transition from a Mode I crack. Finally, a method to account for inelastic deformations in a linear elastic fracture mechanics context was investigated. A residual stress field is extracted from an uncracked finite-element model with a perfectly plastic material model and superimposed on the stress field from the cracked model with a linear elastic material model to account for the inelastic deformations during the determination of the crack driving force. The modelling work is validated by material testing on two different specimen geometries at different temperatures.This Licentiate of Engineering thesis consists of two parts, where Part I gives an introduction and background to the research area, while Part II consists of three papers.
  •  
19.
  • Pant, Prabhat, 1990- (författare)
  • Residual Stress Distributions in Additively Manufactured Parts : Effect of Build Orientation
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Additive manufacturing (AM) of parts using a layer by layer approach has seen a rapid increase in application for production of net shape or near-net shape complex parts, especially in the field of aerospace, automotive, etc. Due to the superiority of manufacturing complex shapes with ease in comparison to the conventional methods, interest in these kinds of processes has increased. Among various methods in AM, laser powder bed fusion (LPBF) is one of the most widely used techniques to produce metallic components.As in all manufacturing processes, residual stress (RS) generation during manufacturing is a relevant issue for the AM process. RS in AM are generated due to a high thermal gradient between subsequent layers. The impact of residual stresses can be significant for the mechanical integrity of the built parts and understanding the generation of RS and the effect of AM process parameters is therefore important for a broader implementation of AM techniques. The work presented in this licentiate thesis aims to investigate the influence of build orientation on the RS distribution in AM parts. For this purpose, L-shaped Inconel 718 parts were printed by LPBF in three different orientations, 0°, 45°, and 90°, respectively. Inconel 718 was selected because it is a superalloy widely used for making gas turbine components. In addition, IN718 has in general good weldability which renders it a good material for additive manufacturing.Residual stress distributions in the parts removed from the build plate were measured using neutron diffraction technique. A simple finite element model was developed to predict the residual stresses and the effect of RS relaxation due to the separation of the parts and build plate. The trend of residual stress distribution predicted was in good agreement with experimental results. In general, compressive RS at the part center and tensile RS near the surface were found. However, while the part printed in 0° orientation had the least amount of RS in all three principal directions of part, the part built in 90° orientation possessed the highest amount of RS in both compression and tension. The study has shown that residual stress distributions in the parts are strongly dependent on the building process. Further, it has shown that the relaxation of RS associated with the removal of the parts from the build plate after printing has a great impact on the final distribution of residual stress in the parts. These results can be used as guidelines for choosing the orientations of the part during printing.
  •  
20.
  • Saarimäki, Jonas, 1985- (författare)
  • Cracks in superalloys
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gas turbines are widely used in industry for power generation and as a power source at hard to reach locations where other possibilities for electrical power supplies are insufficient. New ways of producing greener energy is needed to reduce emission levels. This can be achieved by increasing the combustion temperature of gas turbines. High combustion temperatures can be detrimental and degrade critical components. This raises the demands on the high temperature performance of the superalloys used in gas turbine components. These components are frequently subjected to different cyclic loads combined with for example dwell-times and overloads at elevated temperatures, which can influence the crack growth. Dwell-times have been shown to accelerate crack growth and change cracking behaviour in both Inconel 718, Haynes 282 and Hastelloy X. On the other hand, overloads at the beginning of a dwell-time cycle have been shown to retard the dwell-time effect on crack growth in Inconel 718. More experiments and microstructural investigations are needed to better understand these effects.The work presented in this thesis was conducted under the umbrella of the research program Turbo Power; "High temperature fatigue crack propagation in nickel-based superalloys", where I have mainly looked at fatigue crack growth mechanisms in superalloys subjected to dwell-fatigue, which can have a devastating effect on crack propagation behaviour. Mechanical testing was performed under operation-like cycles in order to achieve representative microstructures and material data for the subsequent microstructural work. Microstructures were investigated using light optical microscopy and scanning electron microscopy (SEM) techniques such as electron channeling contrast imaging (ECCI) and electron backscatter diffraction (EBSD). The outcome of this work has shown that there is a significant increase in crack growth rate when dwell-times are introduced at maximum load (0 % overload) in the fatigue cycle. With the introduction of a dwell-time there is also a shift from transgranular to intergranular crack growth for both Inconel 718 and Haynes 282. The crack growth rate decreases with increasing overload levels in Inconel 718 when an overload is applied prior to the dwell-time. At high temperature, intergranular crack growth was observed in Inconel 718 as a result of oxidation and the creation of nanometric voids. Another observed growth mechanism was crack advance along δ-phase boundaries with subsequent oxidation of the δ-phase. This thesis comprises two parts. Part I gives an introduction to the field of superalloys and the acting microstructural mechanisms related to fatigue and crack propagation. Part II consists of five appended papers, which report the work completed as part of the project.
  •  
21.
  • Saarimäki, Jonas (författare)
  • Effect of Dwell-times on Crack Propagation in Superalloys
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gas turbines are widely used in industry for power generation and as a power source at "hard to reach" locations where other possibilities for electrical supply are insufficient. There is a strong need for greener energy, considering the effect that pollution has had on global warming, and we need to come up with ways of producing cleaner electricity. A way to achieve this is by increasing the combustion temperature in gas turbines. This increases the demand on the high temperature performance of the materials used e.g. superalloys in the turbine. These high combustion temperatures can lead to detrimental degradation of critical components. These components are commonly subjected to cyclic loading of different types e.g. combined with dwell-times and overloads at elevated temperatures, which influence the crack growth. Dwell-times have shown to accelerate crack growth and change the cracking behaviour in both Inconel 718 and Haynes 282. Overloads at the beginning of the dwell-time cycle have shown to retard the dwell time effect on crack growth in Inconel 718. To understand these effects more microstructural investigations are needed.The work presented in this licentiate thesis was conducted under the umbrella of the research program Turbo Power; "High temperature fatigue crack propagation in nickel-based superalloys", concentrating on fatigue crack growth mechanisms in superalloys during dwell-times, which have shown to have a devastating effect on the crack propagation behaviour. Mechanical testing was performed under operation-like conditions in order to achieve representative microstructures and material data for the subsequent microstructural work. The microstructures were microscopically investigated in a scanning electron microscope (SEM) using electron channeling contrast imaging (ECCI) as well as using light optical microscopy.The outcome of this work has shown that there is a significant increase in crack growth rate when dwell-times are introduced at the maximum load (0% overload) in the fatigue cycle. With the introduction of a dwell-time there is also a shift from transgranular to intergranular crack growth for both Inconel 718 and Haynes 282. When an overload is applied prior to the dwell-time, the crack growth rate decreases with increasing overload levels in Inconel 718. At high temperature crack growth in Inconel 718 took place as intergranular crack growth along grain boundaries due to oxidation and the creation of nanometric voids. Another observed growth mechanism was crack advance along phase boundaries with subsequent severe oxidation of the phase.This thesis comprises two parts. The first giving an introduction to the field of superalloys and the acting microstructural mechanisms that influence fatigue during dwell times. The second part consists of two appended papers, which report the work completed so far in the project.
  •  
22.
  • Segersäll, Mikael (författare)
  • Nickel-Based Single-Crystal Superalloys : the crystal orientation influence on high temperature properties
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Superalloys are a group of materials that are used in high temperature applications, for example gas turbines and aero engines. Gas turbines are most commonly used for power generation, and it is only the very critical components which are exposed to the most severe conditions within the turbine, which are made from superalloy material.Today, energy consumption in many parts of the world is very high and is tending to increase. This implies that all power generating sources, including gas turbines, must aim for higher efficiency. For the gas turbine industry, it is a continuous challenge to develop more energy-efficient turbines. One way to do this is to increase the temperature within the hot stage of the turbine. However, increased temperature in the hot stage also challenges the materials that are used there. Today’s materials are already pushed to the limit, i.e. they cannot be exposed to the temperatures which are required to further increase the turbine efficiency. To solve this problem, research which later can lead to better superalloys that can withstand even higher temperatures, has to be conducted within the area of superalloys.The aim of this licentiate thesis is to increase our knowledge about  deformation and damage mechanisms that occur in the microstructure in superalloys when they are subjected to high temperatures and loads. This knowledge can later be used when developing new superalloys. In addition, increased knowledge of what is happening within the material when it is exposed to those severe conditions, will facilitate the development of material models. Material models are used for FEM simulations, when trying to predict life times in gas turbine components during the design process.This licentiate thesis is based on results from thermomechanical fatigue (TMF) testing of Ni-based single-crystal superalloys. Results show that the deformation within the microstructure during TMF is localized to several deformation bands. In addition, the deformation mechanisms are mainly twinning and shearing of the microstructure. Results also indicate that TMF cycling seems to influence the creep rate of single-crystal superalloys.
  •  
23.
  • Unosson, Mattias, 1970- (författare)
  • On failure modelling in finite element analysis : material imperfections and element erosion
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This dissertation concerns failure modelling with material imperfections and element erosion in finite element analyses. The aim has been to improve the element erosion technique, which is simple to use and implement and also computationally inexpensive. The first part of the dissertation serves as an introduction to the topic and as a summary of the methodologies presented in the following part. The second part consists of seven appended papers. In paper A the standard element erosion technique is used for projectile penetration. In papers B and C a methodology that accounts for size effects is developed and applied to crack initiation in armour steel and tungsten carbide. A methodology to better predict the stress state at crack tips with coarse meshes is presented and applied to armour steel in paper D. Papers E and F concern the development of selective mass scaling which allows for larger time steps in explicit methods. Finally, in paper G the previously presented methodologies are used in combination and validated against experimental results on tungsten carbide. The computations show good agreement with the experimental results on failure initiation for both materials, while the computational results on the propagation of cracks show better agreement for the armour steel than for the tungsten carbide.
  •  
24.
  • Lindström, Thomas, 1991-, et al. (författare)
  • Accounting for anisotropic, anisothermal, and inelastic effects in crack initiation lifing of additively manufactured components
  • 2023
  • Ingår i: Fatigue & Fracture of Engineering Materials & Structures. - : Wiley. - 8756-758X .- 1460-2695. ; 46:2, s. 396-415
  • Tidskriftsartikel (refereegranskat)abstract
    • The crack initiation life of a ductile additively manufactured nickel-based superalloy is studied and modeled for low-cycle fatigue and thermomechanical fatigue conditions up to 600 degrees C. Isothermal experiments were performed on smooth specimens at temperatures up to 600 degrees C with different applied strain ranges. Additionally, thermomechanical fatigue experiments at 100-450 degrees C and 100-600 degrees C were performed on smooth specimens under in-phase and out-of-phase conditions. A life prediction model accounting for the anisotropy was developed, where the temperature cycle is accounted with a Delta T$$ \Delta T $$-functionality, generating good agreements with the experiments. The model was also validated on notched specimens undergoing thermomechanical fatigue conditions at 100-500 degrees C using simplified notch correction methods.
  •  
25.
  • Lundström, Erik (författare)
  • Modelling of fatigue crack propagation in Inconel 718 under hold time conditions
  • 2014
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis an investigation and modelling of the fatigue crack propagation in the nickel based superalloy Inconel 718, with a special emphasis on the effect of hold times, is presented. The modelling work has been concentrated on describing the hold time fatigue crack propagation by using the concept of a damaged zone in front of the crack tip, which is believed to have a lowered resistance against crack propagation.The modelling framework is built on physically motivated parameters, which are all easy to calibrate through one specially designed test type. Later evaluation through many experimental tests has also shown that the model is capable, within reasonable scatter level to predict, the hold time fatigue crack propagation for many different temperatures and loading conditions. Further evaluation of a complex flight spectrum, with the incorporation of crack closure within the model, was also predicted with a satisfying result.This thesis is divided into two parts. First, a background and a somewhat deeper discussion of the modelling of fatigue crack growth under hold time conditions is presented. The second part consists of ve appended papers, which describe the work completed so far in the project.
  •  
26.
  • Simonsson, Kjell, 1964- (författare)
  • Finite element simulation of transformation plasticity in martensitic transformation
  • 1992
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This study is concerned with the simulation of transformation plasticity in martensitic transformation. In the first paper the concept of a transformation plasticity strain is introduced from a phenomenological point of view. The basic physical mechanisms behand the phenomenon are discussed, and existing models concerning the evolution of transformation plasticity strain are reviewed. In the second and third paper a micromechanical finite element simulation of a martensitic transformation is presented. The second paper is mainly devoted to a model description, while results are presented and discussed in the third paper. In the fourth paper the thermodynamics of a continuous body containing a moving interface is reviewed, and as an application of the theory, the case of a martensitic transformation is considered.
  •  
27.
  • Simonsson, Kjell, 1964- (författare)
  • Micro-mechanical FE-simulations of the plastic behaviour of steels undergoing martensitic transformation
  • 1994
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is concerned with the mechanical behaviour of steels undergoing martensitic transformation. More specifically, the aim has been to develop a method to numerically stimulate the mean strain (or stress) response associated with a prescribed temperature and mean stress (or strain) variation.Based on the simplification that the jump of deformation gradient associated with the propagating martensitic interfaces for each martensitic variant can be treated as a welldefined metallurgical parameter, a constitutive description of a grain has been developed, in which evolution equations for the microscopic plastic strain and volumic fractions of the different variants are specified. Thus, also the kinetics of the transformation can be extracted from the simulation results.A trilinear isoparametric finite element based on the adopted constitution has been implemented in the FE code TRINITAS. The updating of the internal variables in the integration points has been accomplished with an elastic predictor - plastic corrector procedure, in which the different couplings between the inelastic processes are considered.By modelling a representative cell of the material as a cubical stacking of dubical grains, where each grain is represented by one finite element, numerical creep test simulations of a Fe-25Ni-0.66C steel have been performed. The results obtained are found to be in qualitative agreement with experimental results for both the plastic behaviour and the transformation kinetics. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-27 av 27
Typ av publikation
doktorsavhandling (14)
licentiatavhandling (12)
tidskriftsartikel (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (26)
refereegranskat (1)
Författare/redaktör
Simonsson, Kjell, Pr ... (12)
Simonsson, Kjell, Pr ... (12)
Leidermark, Daniel, ... (8)
Eriksson, Robert, As ... (4)
Moverare, Johan, Pro ... (4)
Moverare, Johan, Dr. (4)
visa fler...
Sjöström, Sören, Pro ... (4)
Leidermark, Daniel, ... (3)
Simonsson, Kjell, 19 ... (3)
Gustafsson, David, 1 ... (3)
Andersson, Håkan, 19 ... (2)
Nilsson, Larsgunnar, ... (2)
Azeez, Ahmed, 1991- (2)
Persson, Christer, P ... (2)
Moverare, Johan, Pro ... (2)
Busse, Christian, 19 ... (2)
Sjödin, Björn (2)
Månsson, Tomas (2)
Nilsson, Daniel (1)
Jonsén, Pär, Profess ... (1)
Almroth, Per, 1975- (1)
Hilding, Daniel, Dr. (1)
Schill, Mikael, Ph.D ... (1)
Eek, Magnus, Ph.D. (1)
Holmberg, Joakim, As ... (1)
Eriksson, Anders, Pr ... (1)
Eriksson, Robert (1)
Aspenberg, David, 19 ... (1)
Olhoff, Niels, Profe ... (1)
Eriksson, Robert, 19 ... (1)
Hörnqvist Colliander ... (1)
Moverare, Johan (1)
Lundström, Erik (1)
Brodin, Håkan, 1969- (1)
Saarimäki, Jonas (1)
Sjöström, Sören, Pro ... (1)
Leidermark, Daniel, ... (1)
Ghosn, Louis J., Ph. ... (1)
Neu, Richard, Profes ... (1)
Johansson, Sten, Pro ... (1)
Segersäll, Mikael (1)
Lundgren, Jan-Erik (1)
Peng, Ru Lin, Profes ... (1)
Ewest, Daniel (1)
Almroth, Per, Lic. E ... (1)
Sjödin, Björn, Lic. ... (1)
Leidermark, Daniel, ... (1)
Sjöström, Sören, Pro ... (1)
Hughes, Martin (1)
Sören, Sjöström, Pro ... (1)
visa färre...
Lärosäte
Linköpings universitet (27)
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Teknik (21)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy