SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simovski Constantin) "

Sökning: WFRF:(Simovski Constantin)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balafendiev, Rustam, et al. (författare)
  • Wire metamaterial filled metallic resonators
  • 2022
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 106:7
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we study electromagnetic properties of a resonator recently suggested for the search of axions-a hypothetical candidate to explain dark matter. A wire medium loaded resonator (called a plasma haloscope when used to search for dark matter) consists of a box filled with a dense array of parallel wires electrically connected to top and bottom walls. We show that the homogenization model of a wire medium works for this resonator without mesoscopic corrections, and that the resonator quality factor Q at the frequency of our interest drops versus the growth of the resonator volume V until it is dominated by resistive losses in the wires. We find that even at room temperature metals like copper can give quality factors in the thousands-an order of magnitude higher than originally assumed. Our theoretical results for both loaded and unloaded resonator quality factors were confirmed by building an experimental prototype. We discuss ways to further improve wire medium loaded resonators.
  •  
2.
  • Ramprecht, Jörgen, 1977- (författare)
  • Electromagnetic Waves in Media with Ferromagnetic Losses
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The operation of a wide variety of applications in today's modern society are heavily dependent on the magnetic properties of ferromagnetic materials and their interaction with electromagnetic fields. The understanding of these interactions and the associated loss mechanisms is therefore crucial for the improvement and future development of such applications. This thesis is concerned with electromagnetic waves in media with ferromagnetic losses. We model the dynamics of the magnetization of a ferromagnetic material with the nonlinear Landau-Lifshitz-Gilbert (LLG) equation and study stability conditions on static solutions. Furthermore, with the aid of a small signal analysis this equation is linearized around a stable static solution. From this analysis we obtain a small signal permeability, which shows that ferromagnetic material in general are gyrotropic with a resonant frequency behavior similar to that of a Lorentz material. In difference to dielectric Lorentz material, this resonance frequency can be shifted with the aid of a bias field. For a specific bias field we obtain a frequency behavior that mimics that of a material with electric conductivity losses. In terms of losses per unit volume it is then possible to define a magnetic conductivity which is independent of frequency. We treat composite materials built from ferromagnetic inclusions in a nonmagnetic and nonconductinig background material. The composite material inherits the gyrotropic structure and resonant behavior of the single particle. The resonance frequency of the composite material is found to be independent of the volume fraction, unlike dielectric composite materials. For small enough particles, typically around 100 nm, it becomes energetically favorable to form a single domain in the particle, where disturbances in the magnetization can propagate in the form of spin waves. We study the possibility of exciting spin waves and derive a susceptibility that takes spin waves into account. It is found that spin wave resonances are excited in the gigahertz range and this could offer a way to increase the losses in a composite material. We also discuss some concerns regarding stability and causality of effective material parameters for biased ferromagnetic materials. Finally, we discuss the possibility of using magnetic materials in absorbing applications. We analyze the scattering of electromagnetic waves from a metal surface covered with a thin magnetic lossy sheet. It is found that very thin magnetic layers can provide substantial specular absorption over a wide frequency band. However, magnetic specular absorbers, where the waves propagates just a fraction of the wavelength in the material, seem to require a certain amount of ferromagnetic material which make them quite heavy and thereby limit its practical use. On the other hand, for nonspecular absorbers where the waves propagates several wavelengths in the material, the amount of magnetic material required for efficient absorption seems to be substantially less than for specular absorbers. Thus, as nonspecular absorbers, magnetic lossy materials could offer very thin and light designs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy