SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Singh Dibyangshee) "

Search: WFRF:(Singh Dibyangshee)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ghosh, Aishee, et al. (author)
  • Proximal discrepancies in intrinsic atomic interaction determines comparative in vivo biotoxicity of Chlorpyrifos and 3,5,6-trichloro-2-pyridinol in embryonic zebrafish
  • 2024
  • In: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 913
  • Journal article (peer-reviewed)abstract
    • Bioaccumulation of Chlorpyrifos (CP) as pesticides due to their aggrandized use in agriculture has raised serious concern on the health of ecosystem and human beings. Moreover, their degraded products like 3,5,6-trichloro-2pyridinol (TCP) has enhanced the distress due to their unpredictable biotoxicity. This study evaluates and deduce the comparative in vivo mechanistic biotoxicity of CP and TCP with zebrafish embryos through experimental and computational approach. Experimental cellular and molecular analysis showed higher induction of morphological abnormalities, oxidative stress and apoptosis in TCP exposed embryos compared to CP exposure due to upregulation of metabolic enzymes like Zhe1a, Sod1 and p53. Computational analysis excavated the differential discrepancies in intrinsic atomic interaction as a reason of disparity in biotoxicity of CP and TCP. The mechanistic differences were deduced due to the differential accumulation and internalisation leading to variable interaction with metabolic enzymes for oxidative stress and apoptosis causing physiological and morphological abnormalities. The study unravelled the information of in vivo toxicity at cellular and molecular level to advocate the attention of taking measures for management of CP as well as TCP for environmental and human health.
  •  
2.
  • Mohakud, Nirmal Kumar, et al. (author)
  • Intrinsic insights to antimicrobial effects of Nitrofurantoin to multi drug resistant Salmonella enterica serovar Typhimurium ms202
  • 2023
  • In: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 165
  • Journal article (peer-reviewed)abstract
    • Emerging multidrug resistant (MDR) serovar of Salmonella has raised the concern of their impactful effect on pathogenic infection and mortality in human lead by the enteric diseases. In order to combat the battle against these MDR Salmonella pathogen, new drug molecules need to be evaluated for their potent antibacterial application. This study evaluates the mechanistic antimicrobial effect of nitrofurantoin against a MDR strain of Salmonella named S. enterica Typhimurium ms202. The antimicrobial effect of nitrofurantoin was studied through experimental and computational approach using standard microbiological and molecular techniques like growth curve analysis, live-dead analysis, oxidative stress evaluation using high throughput techniques like flow cytometry and fluorescent microscopy. The result showed a potent dose dependent antibacterial effect of nitrofurantoin against S. enterica Typhimurium ms202 with a MIC value of 64 & mu;g/ml. Moreover, the mechanistic excavation of the phenomenon described the mechanism as an effect of molecular interaction of nitrofurantoin molecule with membrane receptor proteins OmpC of S. enterica Typhimurium ms202 leading to internalization of the nitrofurantoin heading towards the occurrence of cellular physiological disturbances through oxidative stress impeded by nitrofurantoin-Sod1 C protein interaction. The results indicated towards a synergistic effect of membrane damage, oxidative stress and genotoxicity for the antibacterial effect of nitrofurantoin against S. enterica Typhimurium ms202. The study described the potent dose-dependent application of nitrofurantoin molecule against MDR strains of Salmonella and guided towards their use in further discovered MDR strains.
  •  
3.
  • Das, Antarikshya, et al. (author)
  • Biofilm modifiers : The disparity in paradigm of oral biofilm ecosystem
  • 2023
  • In: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 164
  • Research review (peer-reviewed)abstract
    • A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
  •  
4.
  • Sinha, Adrija, et al. (author)
  • The translational paradigm of nanobiomaterials : Biological chemistry to modern applications
  • 2022
  • In: MATERIALS TODAY BIO. - : Elsevier. - 2590-0064. ; 17
  • Journal article (peer-reviewed)abstract
    • Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled -down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous char-acterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commer-cial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also dis-cussed here.
  •  
5.
  • Verma, Suresh K., et al. (author)
  • In silico nanotoxicology : The computational biology state of art for nanomaterial safety assessments
  • 2023
  • In: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 235
  • Journal article (peer-reviewed)abstract
    • In recent decade, nanotechnology has got an extensive advancement in terms of production and application of nanomaterials. With the advancement, concern has risen for their biomedical and ecological safety, provoking a detailed analysis of the safety assement. Numerous experimental and computational approach has been developed to accomplish the goal of safety assessment of nanomaterials leading to orgin of interdisciplinary fields like nanoinformatics. Nanoinformatics has accomplished significant strides with the development of several modeling frameworks, data platforms, knowledge infrastructures, and in silico tools for risk assessment forecasts of nanomaterials. This review is an attemption to decipher and establish the bridge between the two emerging scientific arenas that includes computational modeling and nanotoxicity. We have reviewed the recent informations to uncover the link between the computational toxicology and nanotoxicology in terms of biomedical and ecological applications. In addition to the details about nanomaterials interaction with the biological system, this article offers a concise evaluation of recent developments in the various nanoinformatics domains. In detail, the computational tools like molecular docking, QSAR, etc. for the prediction of nanotoxicity here have been described. Moreover, techniques like molecular dynamics simulations used for experimental data collection and their translation to standard computational formats are explored.
  •  
6.
  • Choudhury, Anmol, et al. (author)
  • Atmospheric microplastic and nanoplastic : The toxicological paradigm on the cellular system
  • 2023
  • In: Ecotoxicology and Environmental Safety. - : Elsevier BV. - 0147-6513 .- 1090-2414. ; 259
  • Journal article (peer-reviewed)abstract
    • The increasing demand for plastic in our daily lives has led to global plastic pollution. The improper disposal of plastic has resulted in a massive amount of atmospheric microplastics (MPs), which has further resulted in the production of atmospheric nanoplastics (NPs). Because of its intimate relationship with the environment and human health, microplastic and nanoplastic contamination is becoming a problem. Because microplastics and nanoplastics are microscopic and light, they may penetrate deep into the human lungs. Despite several studies demonstrating the abundance of microplastics and nanoplastics in the air, the potential risks of atmospheric microplastics and nanoplastics remain unknown. Because of its small size, atmospheric nanoplastic character-ization has presented significant challenges. This paper describes sampling and characterization procedures for atmospheric microplastics and nanoplastics. This study also examines the numerous harmful effects of plastic particles on human health and other species. There is a significant void in research on the toxicity of airborne microplastics and nanoplastics upon inhalation, which has significant toxicological potential in the future. Further study is needed to determine the influence of microplastic and nanoplastic on pulmonary diseases.
  •  
7.
  • Kirti, Apoorv, et al. (author)
  • Nanoparticle-mediated metronomic chemotherapy in cancer : A paradigm of precision and persistence
  • 2024
  • In: Cancer Letters. - : Elsevier. - 0304-3835 .- 1872-7980. ; 594
  • Journal article (peer-reviewed)abstract
    • Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
  •  
8.
  • Naser, Shaikh Sheeran, et al. (author)
  • Posterity of nanoscience as lipid nanosystems for Alzheimer's disease regression
  • 2023
  • In: MATERIALS TODAY BIO. - : Elsevier BV. - 2590-0064. ; 21
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) is a type of dementia that affects a vast number of people around the world, causing a great deal of misery and death. Evidence reveals a relationship between the presence of soluble A & beta; peptide aggregates and the severity of dementia in Alzheimer's patients. The BBB (Blood Brain Barrier) is a key problem in Alzheimer's disease because it prevents therapeutics from reaching the desired places. To address the issue, lipid nanosystems have been employed to deliver therapeutic chemicals for anti-AD therapy in a precise and targeted manner. The applicability and clinical significance of lipid nanosystems to deliver therapeutic chemicals (Galantamine, Nicotinamide, Quercetin, Resveratrol, Curcumin, HUPA, Rapamycin, and Ibuprofen) for anti-AD therapy will be discussed in this review. Furthermore, the clinical implications of the aforementioned therapeutic compounds for anti-AD treatment have been examined. Thus, this review will pave the way for researchers to fashion therodiagnostics approaches based on nanomedicine to overcome the problems of delivering therapeutic molecules across the blood brain barrier (BBB).
  •  
9.
  • Simnani, Faizan Zarreen, et al. (author)
  • Nanocarrier vaccine therapeutics for global infectious and chronic diseases
  • 2023
  • In: Materials Today. - : Elsevier BV. - 1369-7021 .- 1873-4103. ; 66, s. 371-408
  • Journal article (peer-reviewed)abstract
    • Immunization has the potential to become a viable weapon for the upcoming pandemic and save millions of lives, while also dramatically lowering the high mortality rate brought on by a number of infectious and chronic illnesses. Despite the success of some vaccinations for infectious illnesses, obstacles remain in avoiding and creating fully protective vaccines. Current COVID-19 pandemic highlights need for vaccination platform improvements. Nanomaterials have been created as a possible nanocarrier to elicit a robust immune response against important global morbidity and mortality drivers by encapsulating targeted antigen and functionalizing nanoparticles with particular molecules. In addition to their application in cancer immunotherapy, nanocarriers are currently being included into the development of vaccines against human immunodeficiency virus (HIV), malaria, TB, and influenza. In order to evaluate conventional and next-generation vaccination platforms, this study focuses on the COVID-19 and cancer vaccine as well as the passage and interaction of nanoparticles with immune cells in the lymph node. It also draws attention to the gaps in current and future HIV, TB, malaria, and influenza vaccinations, as well as nanovaccines. The importance of the dose-dependent vaccine in inducing and maintaining neutralizing antibodies after immunization has been discussed in more detail.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view