SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Singh Selopal Gurpreet) "

Sökning: WFRF:(Singh Selopal Gurpreet)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dembele, Kadiatou Therese, et al. (författare)
  • Graphene below the percolation threshold in TiO2 for dye-sensitized solar cells
  • 2015
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 3:6, s. 2580-2588
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a fast and large area-scalable methodology for the fabrication of efficient dye sensitized solar cells (DSSCs) by simple addition of graphene micro-platelets to TiO2 nanoparticulate paste (graphene concentration in the range of 0 to 1.5 wt%). Two dimensional (2D) Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM) confirm the presence of graphene after 500°C annealing for 30 minutes. Graphene addition increases the photocurrent density from 12.4 mA cm-2 in bare TiO2 to 17.1 mA cm-2 in an optimized photoanode (0.01 wt% graphene, much lower than those reported in previous studies), boosting the photoconversion efficiency (PCE) from 6.3 up to 8.8%. The investigation of the 2D graphene distribution showed that an optimized concentration is far below the percolation threshold, indicating that the increased PCE does not rely on the formation of an interconnected network, as inferred by prior investigations, but rather, on increased charge injection from TiO2 to the front electrode. These results give insights into the role of graphene in improving the functional properties of DSSCs and identifying a straightforward methodology for the synthesis of new photoanodes.
  •  
2.
  • Dembele, Kadiatou Therese, et al. (författare)
  • Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells
  • 2013
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:28, s. 14510-14517
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a fast and effective procedure for the preparation of high efficiency hybrid photoanodes for dye-sensitized solar cells (DSCs), based on nanocrystalline TiO2 with limited addition of multiwall carbon nanotubes (CNTs). The mixing process between CNTs and TiO2 nanoparticles is almost instantaneous, which makes it feasible for large-scale fabrication. Enhanced electron lifetime and reduced charge recombination lead to highly increased short circuit current density and overall photoconversion efficiency (from 13.6 mA cm-2 to 16.0 mA cm-2 and from 7.0% to 9.0%, respectively, considering the bare TiO2 and the optimum CNTs concentration, which is 0.010 wt %), while the small reduction in open circuit photovoltage does not significantly affect cell performances. This result is remarkable since a standard dye molecule (N719) was used and no chemical treatments of the photoanodes prior to cell fabrication were applied (i.e., soaking in TiCl4 to boost open circuit photovoltage). © 2013 American Chemical Society.
  •  
3.
  • Milan, Riccardo, et al. (författare)
  • A Player Often Neglected: Electrochemical Comprehensive Analysis of Counter Electrodes for Quantum Dot Solar Cells
  • 2016
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 8:12, s. 7766-7776
  • Tidskriftsartikel (refereegranskat)abstract
    • The role played by the counter electrode (CE) in quantum dot sensitized solar cells (QDSSCs) is crucial: it is indeed responsible for catalyzing the regeneration of the redox electrolyte after its action to take back the oxidized light harvesters to the ground state, thus keeping the device active and stable. The activity of CE is moreover directly related to the fill factor and short circuit current through the resistance of the interface electrode–electrolyte that affects the series resistance of the cell. Despite that, too few efforts have been devoted to a comprehensive analysis of this important device component. In this work we combine an extensive electrochemical characterization of the most common materials exploited as CEs in QDSSCs (namely, Pt, Au, Cu2S obtained by brass treatment, and Cu2S deposited on conducting glass via spray) with a detailed characterization of their surface composition and morphology, aimed at systematically defining the relationship between their nature and electrocatalytic activity.
  •  
4.
  • Milan, Riccardo, et al. (författare)
  • Dye-sensitized solar cells based on a push-pull zinc phthalocyanine bearing diphenylamine donor groups : computational predictions face experimental reality
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Computational studies have suggested that the integration of secondary amine as donor groups in the structure of unsymmetrical zinc phthalocyanine (ZnPc) should have positive effects on photovoltaic performance, once the molecule is integrated as light harvester in dye sensitized solar cells (DSSCs). Aiming at obtaining experimental confirmation, we synthesized a peripherally substituted push-pull ZnPc bearing three electron donating diphenylamine substituents and a carboxylic acid anchoring group and integrated it as sensitizer in TiO2-based DSSCs. Detailed functional characterization of solar energy converting devices resulted in ruling out the original hypothesis. The causes of this discrepancy have been highlighted, leading to a better understanding of the conditions for an effective design of push-pull diarylamino substituted ZnPcs for DSSCs.
  •  
5.
  • Milan, Riccardo, et al. (författare)
  • Zinc phthalocyanines as light harvesters for SnO2-based solar cells : a case study
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • SnO2 nanoparticles have been synthesized and used as electron transport material (ETM) in dye sensitized solar cells (DSSCs), featuring two peripherally substituted push-pull zinc phthalocyanines (ZnPcs) bearing electron donating diphenylamine substituents and carboxylic acid anchoring groups as light harvesters. These complexes were designed on the base of previous computational studies suggesting that the integration of secondary amines as donor groups in the structure of unsymmetrical ZnPcs might enhance photovoltaics performances of DSSCs. In the case of TiO2-based devices, this hypothesis has been recently questioned by experimental results. Herein we show that the same holds for SnO2, despite the optimal matching of the optoelectronic characteristics of the synthesized nanoparticles and diphenylamino-substituted ZnPcs, thus confirming that other parameters heavily affect the solar cells performances and should be carefully taken into account when designing materials for photovoltaic applications.
  •  
6.
  • Milan, Riccardo, et al. (författare)
  • ZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Layered multi-oxide concept was applied for fabrication of photoanodes for dye-sensitized solar cells based on ZnO and SnO2, capitalizing on the beneficial properties of each oxide. The effect of different combinations of ZnO@SnO2 layers was investigated, aimed at exploiting the high carrier mobility provided by the ZnO and the higher stability under UV irradiation pledged by SnO2. Bi-oxide photoanodes performed much better in terms of photoconversion efficiency (PCE) (4.96%) compared to bare SnO2 (1.20%) and ZnO (1.03%). Synergistic cooperation is effective for both open circuit voltage and photocurrent density: enhanced values were indeed recorded for the layered photoanode as compared with bare oxides (Voc enhanced from 0.39 V in case of bare SnO2 to 0.60 V and Jsc improved from 2.58 mA/cm2 pertaining to single ZnO to 14.8 mA/cm2). Improved functional performances of the layered network were ascribable to the optimization of both high chemical capacitance (provided by the SnO2) and low recombination resistance (guaranteed by ZnO) and inhibition of back electron transfer from the SnO2 conduction band to the oxidized species of the electrolyte. Compared with previously reported results, this study testifies how a simple electrode design is powerful in enhancing the functional performances of the final device.
  •  
7.
  •  
8.
  • Selopal, Gurpreet Singh, et al. (författare)
  • Graphene as transparent front contact for dye sensitized solar cells
  • 2015
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248 .- 1879-3398. ; 135, s. 99-105
  • Tidskriftsartikel (refereegranskat)abstract
    • A transparent conductive graphene film is investigated as front contact in dye-sensitized solar cells (DSSCs), as an alternative to traditional transparent conducting oxides (TCO). The film is composed of poly-crystalline few-layers graphene, covering homogeneously an area of 1 cm2, deposited by chemical vapour deposition (CVD) technique on larger area Cu catalyst substrate and transferred on glass. DSSC photoanode is then fabricated, according to consolidated procedure, by sequential casting of TiO2 films through tape casting technique, followed by annealing at 500 °C, and sensitization with N719 dye. An outstanding value of photoconversion efficiency as high as 2% is recorded for the best cell, under one sun irradiation (AM 1.5 G, 100 mW cm−2), which is the highest ever reported for this kind of devices using graphene as front conducting film. Compared to previous results in the literature, the application of a large area continuous graphene film, guaranteed by the CVD deposition, definitely outperforms graphene layers composed by smaller graphene platelets (at micrometer scale). Morphological and electrical characterizations of graphene are reported and the functional performances of the best cell are compared with those obtained from classical DSSC exploiting fluorine-doped tin oxide. Obtained results encourage further investigation of graphene homogeneous thin film as viable alternative to standard TCOs for application in advanced devices, requiring high temperature processing or flexible substrates, incompatible with standard TCO films.
  •  
9.
  • Selopal, Gurpreet Singh, et al. (författare)
  • Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the synthesis and characterization of new metal-free organic dyes (namely B18, BTD-R, and CPTD-R) which designed with D-π-A concept to extending the light absorption region by strong conjugation group of π-linker part and applied as light harvester in dye sensitized solar cells (DSSCs). We compared the photovoltaic performance of these dyes in two different photoanodes: a standard TiO2 mesoporous photoanode and a ZnO photoanode composed of hierarchically assembled nanostructures. The results demonstrated that B18 dye has better photovoltaic properties compared to other two dyes (BTD-R and CPTD-R) and each dye has higher current density (Jsc) when applied to hierarchical ZnO nanocrystallites than the standard TiO2 mesoporous film. Transient photocurrent and photovoltage decay measurements (TCD/TVD) were applied to systematically study the charge transport and recombination kinetics in these devices, showing the electron life time (τR) of B18 dye in ZnO and TiO2 based DSSCs is higher than CPTD-R and BTD-R based DSSCs, which is consistent with the photovoltaic performances. The conversion efficiency in ZnO based DSSCs can be further boosted by 35%, when a compact ZnO blocking layer (BL) is applied to inhibit electron back reaction
  •  
10.
  • Wang, Rui, et al. (författare)
  • Environmentally friendly Mn-alloyed core/shell quantum dots for high-efficiency photoelectrochemical cells
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 8:21, s. 10736-10741
  • Tidskriftsartikel (refereegranskat)abstract
    • Colloidal quantum dot (QD)-based photoelectrochemical (PEC) cells are cost-effective devices showing remarkable solar-to-fuel conversion efficiency. However, the extensive use of highly toxic elements (e.g. Pb and Cd) in QDs' synthesis and device fabrication is still a major challenge towards their practical development. Herein, we fabricate a solar-driven PEC cell based on environmentally friendly Mn-alloyed CuInS2 (MnCIS)/ZnS core/shell QDs, showing more favorable band alignment, efficient charge transfer, reduced charge recombination and lower charge transfer resistance with respect to the control device fabricated using unalloyed CuInS2 (CIS)/ZnS core/shell QDs. An unprecedented photocurrent density of ∼5.7 mA cm−2 with excellent stability was obtained for the as-fabricated MnCIS/ZnS core/shell QD-based PEC device when operated under standard one sun irradiation (AM 1.5G, 100 mW cm−2). These results indicate that the transition metal-alloyed environmentally friendly core/shell QDs are promising for next-generation solar technologies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy