SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sinogeikin Stanislav) "

Sökning: WFRF:(Sinogeikin Stanislav)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ji, Cheng, et al. (författare)
  • Crystallography of low Z material at ultrahigh pressure : Case study on solid hydrogen
  • 2020
  • Ingår i: Matter and Radiation at Extremes. - : American Institute of Physics (AIP). - 2468-2047 .- 2468-080X. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Diamond anvil cell techniques have been improved to allow access to the multimegabar ultrahigh-pressure region for exploring novel phenomena in condensed matter. However, the only way to determine crystal structures of materials above 100 GPa, namely, X-ray diffraction (XRD), especially for low Z materials, remains nontrivial in the ultrahigh-pressure region, even with the availability of brilliant synchrotron X-ray sources. In this work, we perform a systematic study, choosing hydrogen (the lowest X-ray scatterer) as the subject, to understand how to better perform XRD measurements of low Z materials at multimegabar pressures. The techniques that we have developed have been proved to be effective in measuring the crystal structure of solid hydrogen up to 254 GPa at room temperature [C. Ji et al., Nature 573, 558–562 (2019)]. We present our discoveries and experiences with regard to several aspects of this work, namely, diamond anvil selection, sample configuration for ultrahigh-pressure XRD studies, XRD diagnostics for low Z materials, and related issues in data interpretation and pressure calibration. We believe that these methods can be readily extended to other low Z materials and can pave the way for studying the crystal structure of hydrogen at higher pressures, eventually testing structural models of metallic hydrogen.
  •  
2.
  • Ji, Cheng, et al. (författare)
  • Ultrahigh-pressure isostructural electronic transitions in hydrogen
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 573:7775, s. 558-562
  • Tidskriftsartikel (refereegranskat)abstract
    • High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal(1), which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate(2,3). Therefore, understanding such transitions remains an important objective in condensed matter physics(4,5). However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close-packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetry breaking.
  •  
3.
  • Shen, Guoyin, et al. (författare)
  • Effect of helium on structure and compression behavior of SiO2 glass
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:15, s. 6004-6007
  • Tidskriftsartikel (refereegranskat)abstract
    • The behavior of volatiles is crucial for understanding the evolution of the Earth's interior, hydrosphere, and atmosphere. Noble gases as neutral species can serve as probes and be used for examining gas solubility in silicate melts and structural responses to any gas inclusion. Here, we report experimental results that reveal a strong effect of helium on the intermediate range structural order of SiO2 glass and an unusually rigid behavior of the glass. The structure factor data show that the first sharp diffraction peak position of SiO2 glass in helium medium remains essentially the same under pressures up to 18.6 GPa, suggesting that helium may have entered in the voids in SiO2 glass under pressure. The dissolved helium makes the SiO2 glass much less compressible at high pressures. GeO2 glass and SiO2 glass with H-2 as pressure medium do not display this effect. These observations suggest that the effect of helium on the structure and compression of SiO2 glass is unique.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy