SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sinton David) "

Sökning: WFRF:(Sinton David)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Minzioni, Paolo, et al. (författare)
  • Roadmap for optofluidics
  • 2017
  • Ingår i: Journal of Optics. - : Institute of Physics (IOP). - 2040-8978 .- 2040-8986. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Optofluidics, nominally the research area where optics and fluidics merge, is a relatively new research field and it is only in the last decade that there has been a large increase in the number of optofluidic applications, as well as in the number of research groups, devoted to the topic. Nowadays optofluidics applications include, without being limited to, lab-on-a-chip devices, fluid-based and controlled lenses, optical sensors for fluids and for suspended particles, biosensors, imaging tools, etc. The long list of potential optofluidics applications, which have been recently demonstrated, suggests that optofluidic technologies will become more and more common in everyday life in the future, causing a significant impact on many aspects of our society. A characteristic of this research field, deriving from both its interdisciplinary origin and applications, is that in order to develop suitable solutions a combination of a deep knowledge in different fields, ranging from materials science to photonics, from microfluidics to molecular biology and biophysics, is often required. As a direct consequence, also being able to understand the long-term evolution of optofluidics research is not easy. In this article, we report several expert contributions on different topics so as to provide guidance for young scientists. At the same time, we hope that this document will also prove useful for funding institutions and stakeholders to better understand the perspectives and opportunities offered by this research field.
  •  
2.
  • Wang, Ning, et al. (författare)
  • Boride-derived oxygen-evolution catalysts
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal borides/borates have been considered promising as oxygen evolution reaction catalysts; however, to date, there is a dearth of evidence of long-term stability at practical current densities. Here we report a phase composition modulation approach to fabricate effective borides/borates-based catalysts. We find that metal borides in-situ formed metal borates are responsible for their high activity. This knowledge prompts us to synthesize NiFe-Boride, and to use it as a templating precursor to form an active NiFe-Borate catalyst. This boride-derived oxide catalyzes oxygen evolution with an overpotential of 167 mV at 10 mA/cm2 in 1 M KOH electrolyte and requires a record-low overpotential of 460 mV to maintain water splitting performance for over 400 h at current density of 1 A/cm2. We couple the catalyst with CO reduction in an alkaline membrane electrode assembly electrolyser, reporting stable C2H4 electrosynthesis at current density 200 mA/cm2 for over 80 h.
  •  
3.
  • Wang, Ning, et al. (författare)
  • Suppressing the liquid product crossover in electrochemical CO2 reduction
  • 2021
  • Ingår i: SmartMat. - : John Wiley & Sons. - 2688-819X. ; 2:1, s. 12-16
  • Forskningsöversikt (refereegranskat)abstract
    • Coupling electrochemical CO2 reduction (CO2R) with a renewable energy source to create high‐value fuels and chemicals is a promising strategy in moving toward a sustainable global energy economy. CO2R liquid products, such as formate, acetate, ethanol, and propanol, offer high volumetric energy density and are more easily stored and transported than their gaseous counterparts. However, a significant amount (~30%) of  liquid products from electrochemical CO2R in a flow cell reactor cross the ion exchange membrane, leading to the substantial loss of system‐level Faradaic efficiency. This severe crossover of the liquid product has—until now—received limited attention. Here, we review promising methods to suppress liquid product crossover, including the use of bipolar membranes, solid‐state electrolytes, and cation‐exchange membranes‐based acidic CO2R systems. We then outline the remaining challenges and future prospects for the production of concentrated liquid products from CO2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy