SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sitnicka Ewa) "

Sökning: WFRF:(Sitnicka Ewa)

  • Resultat 1-38 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Renoux, Virginie, et al. (författare)
  • Identification of a Human Natural Killer Cell Lineage-Restricted Progenitor in Fetal and Adult Tissues.
  • 2015
  • Ingår i: Immunity. - : Elsevier BV. - 1074-7613 .- 1097-4180. ; 43:2, s. 394-407
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural killer (NK) cells are cytotoxic lymphocytes and play a vital role in controlling viral infections and cancer. In contrast to B and T lymphopoiesis where cellular and regulatory pathways have been extensively characterized, the cellular stages of early human NK cell commitment remain poorly understood. Here we demonstrate that a Lin(-)CD34(+)CD38(+)CD123(-)CD45RA(+)CD7(+)CD10(+)CD127(-) population represents a NK lineage-restricted progenitor (NKP) in fetal development, umbilical cord blood, and adult tissues. The newly identified NKP has robust NK cell potential both in vitro and in vivo, generates functionally cytotoxic NK cells, and lacks the ability to produce T cells, B cells, myeloid cells, and innate lymphoid-like cells (ILCs). Our findings identify an early step to human NK cell commitment and provide new insights into the human hematopoietic hierarchy.
  •  
2.
  • Adolfsson, Jörgen, et al. (författare)
  • Identification of Flt3(+) lympho-myeloid stem cells lacking erythro-megakaryocytic potential: A revised road map for adult blood lineage commitment
  • 2005
  • Ingår i: Cell. - : Elsevier (Cell Press). - 0092-8674 .- 1097-4172. ; 121:2, s. 295-306
  • Tidskriftsartikel (refereegranskat)abstract
    • All blood cell lineages derive from a common hematopoietic stem cell (HSC). The current model implicates that the first lineage commitment step of adult pluripotent HSCs results in a strict separation into common lymphoid and common myeloid precursors. We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates. Cells in the Lin-Sca-1+c-kit+ HSC compartment coexpressing high levels of the tyrosine kinase receptor Flt3 sustain granulocyte, monocyte, and B and T cell potentials but in contrast to Lin-Sca-1(+)ckit(+)Flt3(-) HSCs fail to produce significant erythroid and megakaryocytic progeny. This distinct lineage restriction site is accompanied by downregulation of genes for regulators of erythroid and megakaryocyte development. In agreement with representing a lymphoid primed progenitor, Lin(-)Sca-l(+)c-kit(+)CD34(+)Flt3(+) cells display upregulated IL-7 receptor gene expression. Based on these observations, we propose a revised road map for adult blood lineage development.
  •  
3.
  • Adolfsson, Jörgen, et al. (författare)
  • Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity
  • 2001
  • Ingår i: Immunity. - 1074-7613. ; 15:4, s. 659-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Flt3 has emerged as a potential regulator of hematopoietic stem cells (HSC). Sixty percent of cells in the mouse marrow Lin(-)Sca1(+)c-kit(+) HSC pool expressed flt3. Although single cell cloning showed comparable high proliferative, myeloid, B, and T cell potentials of Lin(-)Sca1(+)c-kit(+)flt3(+) and Lin(-)Sca1(+)c-kit(+)flt3(-) cells, only Lin(-)Sca1(+)c-kit(+)flt3(-) cells supported sustained multilineage reconstitution. In striking contrast, Lin(-)Sca1(+)c-kit(+)flt3(+) cells rapidly and efficiently reconstituted B and T lymphopoiesis, whereas myeloid reconstitution was exclusively short term. Unlike c-kit, activation of flt3 failed to support survival of HSC, whereas only flt3 mediated survival of Lin(-)Sca1(+)c-kit(+)flt3(+) reconstituting cells. Phenotypic and functional analysis support that Lin(-)Sca1(+)c-kit(+)flt3(+) cells are progenitors for the common lymphoid progenitor. Thus, upregulation of flt3 expression on Lin(-)Sca1(+)c-kit(+) HSC cells is accompanied by loss of self-renewal capacity but sustained lymphoid-restricted reconstitution potential.
  •  
4.
  • Björgvinsdottir, Helga, et al. (författare)
  • Efficient Oncoretroviral Transduction of Extended Long-Term Culture-Initiating Cells and NOD/SCID Repopulating Cells: Enhanced Reconstitution with Gene-Marked Cells Through an Ex Vivo Expansion Approach.
  • 2002
  • Ingår i: Human Gene Therapy. - 1043-0342. ; 13:9, s. 1061-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments of surrogate assays for human hematopoietic stem cells (HSC) have facilitated efforts at improving HSC gene transfer efficiency. Through the use of xenograft transplantation models, such as nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, successful oncoretroviral gene transfer to transplantable hematopoietic cells has been achieved. However, because of the low frequency and/or homing efficiency of SCID repopulating cells (SRC) in bone marrow (BM), studies have primarily focused on cord blood (CB). The recently developed extended (> 60 days) long-term culture-initiating cell (ELTC-IC) assay detects an infrequent and highly quiescent candidate stem cell population in BM as well as CB of the CD34(+)CD38(-) phenotype. Although these characteristics suggest that ELTC-IC and SRC might be closely related, attempts to oncoretrovirally transduce ELTC-IC have been unsuccessful. Here, recently developed conditions (high concentrations of SCF + FL + Tpo in serum-free medium) supporting expansion of BM CD34(+)CD38(-) 12 week ELTC-IC promoted efficient oncoretroviral transduction of BM and CB ELTC-IC. Although SRC can be transduced with oncoretroviral vectors, this is frequently associated with loss of reconstituting activity, posing a problem for development of clinical HSC gene therapy. However, previous attempts at expanding transduced HSC posttransduction resulted in compromised rather than improved gene marking. Utilizing conditions promoting cell divisions and transduction of ELTC-IC we show that although 5 days of ex vivo culture is sufficient to obtain maximum gene transfer efficiency to SRC, extension of the expansion period to 12 days significantly enhances multilineage reconstitution activity of transduced SRC, supporting the feasibility of improving gene marking through ex vivo expansion.
  •  
5.
  • Buza-Vidas, Natalija, et al. (författare)
  • Crucial role of FLT3 ligand in immune reconstitution following bone marrow transplantation and high dose chemotherapy.
  • 2007
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 110:1, s. 424-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Almost 5 decades after the first clinical transplantations, delayed immune reconstitution remains a considerable hurdle in bone marrow transplantation, and the mechanisms regulating immune reconstitution after transplantation remain to be established. Whereas adult fms-like tyrosine kinase 3 ligand-deficient (FL-/-) mice have reduced numbers of early Band T-cell progenitors, they sustain close to normal levels of mature B and T cells. Herein, we demonstrate that adult bone marrow cells fail to reconstitute B-cell progenitors and conventional B cells in lethally irradiated FL-/- recipients, which also display delayed kinetics of T-cell reconstitution. Similarly, FL is essential for B-cell regeneration after chemotherapy-induced myeloablation. In contrast, fetal progenitors reconstitute B lymphopoiesis in FL-/- mice, albeit at reduced levels. A critical role of FL in adult B lymphopoiesis is further substantiated by an age-progressive decline in peripheral conventional B cells in FL-/- mice, whereas fetally and early postnatally derived B1 and marginal zone B cells are sustained in a FL-independent manner. Thus, FL plays a crucial role in sustaining conventional B lymphopoiesis in adult mice and, as a consequence, our findings implicate a critical role of FL in promoting immune reconstitution after myeloablation and bone marrow transplantation.
  •  
6.
  • Buza-Vidas, Natalija, et al. (författare)
  • FLT3 receptor and ligand are dispensable for maintenance and posttransplantation expansion of mouse hematopoietic stem cells
  • 2009
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 113:15, s. 3453-3460
  • Tidskriftsartikel (refereegranskat)abstract
    • Originally cloned from hematopoietic stem cell (HSC) populations and its ligand being extensively used to promote ex vivo HSC expansion, the FMS-like tyrosine kinase 3 (FLT3; also called FLK2) receptor and its ligand (FL) were expected to emerge as an important physiologic regulator of HSC maintenance and expansion. However, the role of FLT3 receptor and ligand in HSC regulation remains unclear and disputed. Herein, using Fl-deficient mice, we establish for the first time that HSC expansion in fetal liver and after transplantation is FL independent. Because previous findings in Flk2(-/-) mice were compatible with an important role of FLT3 receptor in HSC regulation and because alternative ligands might potentially interact directly or indirectly with FLT3 receptor, we here also characterized HSCs in Flk2(-/-) mice. Advanced phenotypic as well as functional evaluation of Flk2(-/-) HSCs showed that the FLT3 receptor is dispensable for HSC steady-state maintenance and expansion after transplantation. Taken together, these studies show that the FLT3 receptor and ligand are not critical regulators of mouse HSCs, neither in steady state nor during fetal or posttransplantation expansion. (Blood. 2009; 113: 3453-3460)
  •  
7.
  • Böiers, Charlotta, et al. (författare)
  • A Human IPS Model Implicates Embryonic B-Myeloid Fate Restriction as Developmental Susceptibility to B Acute Lymphoblastic Leukemia-Associated ETV6-RUNX1
  • 2018
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 44:3, s. 7-377
  • Tidskriftsartikel (refereegranskat)abstract
    • ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19−IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19−IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state. Böiers, Richardson et al. explore the potential for a developmental susceptibility to childhood acute lymphoblastic leukemia. Characterization of earliest B cell progenitors in human fetal liver identified a unique progenitor compartment that can be recapitulated using human pluripotent stem cells to model the impact of the pre-leukemia-initiating oncogene ETV6-RUNX1.
  •  
8.
  • Böiers, Charlotta, et al. (författare)
  • Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development.
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; May 4, s. 5061-5068
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice deficient in FLT3 signalling have reductions in early multipotent and lymphoid progenitors, whereas no evident myeloid phenotype has been reported. However, activating mutations of Flt3 are among the most common genetic events in acute myeloid leukemia and mice harbouring internal tandem duplications within Flt3 (Flt3-ITD) develop myeloproliferative disease, with characteristic expansion of granulocyte-monocyte (GM) progenitors, possibly compatible with FLT3-ITD promoting a myeloid fate of multipotent progenitors. Alternatively, FLT3 might be expressed at the earliest stages of GM development. Herein, we investigated the expression, function and role of FLT3 in recently identified early GM progenitors. Flt3-cre fate mapping established that most progenitors and mature progeny of the GM lineage are derived from Flt3 expressing progenitors. A higher expression of FLT3 was found in preGMP compared to GMP, and preGMPs were more responsive to stimulation with FLT3 ligand (FL). Whereas preGMPs and GMPs were reduced in Fl(-/-) mice, megakaryocyte-erythroid progenitors were unaffected and lacked FLT3 expression. Notably, mice deficient in both Thrombopoietin (THPO) and FL, had a more pronounced GM progenitor phenotype than Thpo(-/-) mice, establishing a role of FL in THPO-dependent and independent regulation of GM progenitors, of likely significance for myeloid malignancies with Flt3-ITD mutations.
  •  
9.
  • Böiers, Charlotta, et al. (författare)
  • Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells.
  • 2013
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909 .- 1875-9777. ; 13:5, s. 535-548
  • Tidskriftsartikel (refereegranskat)abstract
    • In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.
  •  
10.
  •  
11.
  • Cheng, Min, et al. (författare)
  • Distinct and overlapping patterns of cytokine regulation of thymic and bone marrow-derived NK cell development.
  • 2009
  • Ingår i: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 182:3, s. 1460-1468
  • Tidskriftsartikel (refereegranskat)abstract
    • Although bone marrow (BM) represents the main site for postnatal NK cell development, recently a distinct thymic-dependent NK cell pathway was identified. These studies were designed to investigate the role of cytokines in regulation of thymic NK cells and to compare with established regulatory pathways of BM-dependent NK cell compartment. The common cytokine receptor gamma-chain (Il2rg) essential for IL-15-induced signaling, and FMS-like tyrosine kinase 3 (FLT3) receptor ligand (Flt3l) were previously identified as important regulatory pathways of the BM NK cell compartment based on lack of function studies in mice, however their complementary action remains unknown. By investigating mice double-deficient in Il2rg and Flt3l (Flt3l(-/-) Il2rg(-/-)), we demonstrate that FLT3L is important for IL2Rg-independent maintenance of both immature BM as well as peripheral NK cells. In contrast to IL-7, which is dispensable for BM but important for thymic NK cells, IL-15 has a direct and important role in both thymic and BM NK cell compartments. Although thymic NK cells were not affected in Flt3l(-/-) mice, Flt3l(-/-)Il2rg(-/-) mice lacked detectable thymic NK cells, suggesting that FLT3L is also important for IL-2Rg-independent maintenance of thymic NK cells. Thus, IL-2Rg cytokines and FLT3L play complementary roles and are indispensable for homeostasis of both BM and thymic dependent NK cell development, suggesting that the cytokine pathways crucial for these two distinct NK cell pathways are largely overlapping.
  •  
12.
  • Cichocki, Frank, et al. (författare)
  • NK cell development and function - Plasticity and redundancy unleashed.
  • 2014
  • Ingår i: Seminars in Immunology. - : Elsevier BV. - 1096-3618 .- 1044-5323. ; 26:2, s. 114-126
  • Forskningsöversikt (refereegranskat)abstract
    • Bone marrow-derived natural killer (NK) cells constitute the major subset of cytotoxic lymphocytes in peripheral blood. They provide innate defense against intracellular infection or malignancy and contribute to immune homeostasis. Large numbers of NK cells are also present in tissues, including the liver and uterus, where they can mediate immunosurveillance but also play important roles in tissue remodeling and vascularization. Here, we review the pathways involved in NK cell lineage commitment and differentiation, discussing relationships to other lymphocyte populations and highlighting genetic determinants. Characterizing NK cells from distinct tissues and during infections have revealed subset specializations, reflecting inherent cellular plasticity. In this context, we discuss how different environmental and inflammatory stimuli may shape NK cells. Particular emphasis is placed on genes identified as being critical for NK cell development, differentiation, and function from studies of model organisms or associations with disease. Such studies are also revealing important cellular redundancies. Here, we provide a view of the genetic framework constraining NK cell development and function, pinpointing molecules required for these processes but also underscoring plasticity and redundancy that may underlie robust immunological function. With this view, built in redundancy may highlight the importance of NK cells to immunity.
  •  
13.
  • Daams, Renée, et al. (författare)
  • Deletion of nemo-like kinase in T cells reduces single-positive CD8+thymocyte population
  • 2020
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 205:7, s. 1830-1841
  • Tidskriftsartikel (refereegranskat)abstract
    • The β-catenin/Wnt signaling pathway plays an important role in all stages of T cell development. Nemo-like kinase (NLK) is an evolutionary conserved serine/threonine kinase and a negative regulator of the Wnt signaling pathway. NLK can directly phosphorylate histone deacetylase 1 (HDAC1), as well as T cell factor/lymphoid enhancer-binding factor (TCF/LEF), causing subsequent repression of target gene transcription. By engineering mice lacking NLK in early stages of T cell development, we set out to characterize the role NLK plays in T cell development and found that deletion of NLK does not affect mouse health or lymphoid tissue development. Instead, these mice harbored a reduced number of single-positive (SP) CD8+ thymocytes without any defects in the SP CD4+ thymocyte population. The decrease in SP CD8+ thymocytes was not caused by a block in differentiation from double-positive CD4+CD8+ cells. Neither TCR signaling nor activation was altered in the absence of NLK. Instead, we observed a significant increase in cell death and reduced phosphorylation of LEF1 as well as HDAC1 among NLK-deleted SP CD8+ cells. Thus, NLK seems to play an important role in the survival of CD8+ thymocytes. Our data provide evidence for a new function for NLK with regard to its involvement in T cell development and supporting survival of SP CD8+ thymocytes.
  •  
14.
  • Drissen, Roy, et al. (författare)
  • Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing
  • 2016
  • Ingår i: Nature Immunology. - : Springer Science and Business Media LLC. - 1529-2908 .- 1529-2916. ; 17:6, s. 666-676
  • Tidskriftsartikel (refereegranskat)abstract
    • According to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)Flt3(hi)) and common myeloid progenitors (CMPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)CD41(hi)) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre-granulocyte-macrophage progenitor (pre-GM) (Lin(-)Sca-1(-)c-Kit(+)CD41(-)FcγRII/III(-)CD150(-)CD105(-)). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential.
  •  
15.
  • Jassinskaja, Maria, et al. (författare)
  • Ontogenic shifts in cellular fate are linked to proteotype changes in lineage-biased hematopoietic progenitor cells
  • 2021
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 34:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The process of hematopoiesis is subject to substantial ontogenic remodeling that is accompanied by alterations in cellular fate during both development and disease. We combine state-of-the-art mass spectrometry with extensive functional assays to gain insight into ontogeny-specific proteomic mechanisms regulating hematopoiesis. Through deep coverage of the cellular proteome of fetal and adult lympho-myeloid multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs), and granulocyte-monocyte progenitors (GMPs), we establish that features traditionally attributed to adult hematopoiesis are conserved across lymphoid and myeloid lineages, whereas generic fetal features are suppressed in GMPs. We reveal molecular and functional evidence for a diminished granulocyte differentiation capacity in fetal LMPPs and GMPs relative to their adult counterparts. Our data indicate an ontogeny-specific requirement of myosin activity for myelopoiesis in LMPPs. Finally, we uncover an ontogenic shift in the monocytic differentiation capacity of GMPs, partially driven by a differential expression of Irf8 during fetal and adult life.
  •  
16.
  • Jensen, Christina, et al. (författare)
  • FLT3 ligand and not TSLP is the key regulator of IL-7-independent B-1 and B-2 B Lymphopoiesis.
  • 2008
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 112, s. 2297-2304
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenotypically and functionally distinct progenitors and developmental pathways have been proposed to exist for fetally-derived B-1 and conventional B-2 cells. Although IL-7 appears to be the primary regulator of fetal and adult B lymphopoiesis in mice, considerable fetal B lymphopoiesis and postnatal B-cells are sustained in the absence of IL-7, and in man B-cell generation is suggested to be largely or entirely IL-7-independent, as severe combined immune-deficient patients with IL-7-deficiency appear to have normal B-cell numbers. However, the role of other cytokines in IL-7-independent B lymphopoiesis remains to be established. Although thymic stromal lymphopoietin (TSLP) has been proposed to be the main factor driving IL-7-independent B lymphopoiesis, and to distinguish fetal from adult B-cell progenitor development in mice, recent studies failed to support a primary role of TSLP in IL-7-independent fetal B-cell development. However, the role of TSLP in IL-7-independent adult B lymphopoiesis and in particular in regulation of B-1 cells remains to be established. Herein, we demonstrate that rather than TSLP, IL-7 and FLT3 ligand (FLT3L) are combined responsible for all B-cell generation in mice, including recently identified B-1-specified cell progenitors. Thus, the same IL-7 and FLT3L-mediated signaling regulate alternative cellular pathways of fetal and adult B-1 and B-2 B lymphopoiesis.
  •  
17.
  • Jensen, Christina, et al. (författare)
  • Permissive roles of hematopoietin and cytokine tyrosine kinase receptors in early T-cell development
  • 2008
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 111:4, s. 2083-2090
  • Tidskriftsartikel (refereegranskat)abstract
    • Although several cytokines have been demonstrated to be critical regulators of development of multiple blood cell lineages, it remains disputed to what degree they act through instructive or permissive mechanisms. Signaling through the FMS-like tyrosine kinase 3 (FLT3) receptor and the hematopoietin IL-7 receptor alpha (IL-7Ralpha) has been demonstrated to be of critical importance for sustained thymopoiesis. Signaling triggered by IL-7 and thymic stromal lymphopoietin (TSLP) is dependent on IL-7Ralpha, and both ligands have been implicated in T-cell development. However, we demonstrate that, whereas thymopoiesis is abolished in adult mice doubly deficient in IL-7 and FLT3 ligand (FLT3L), TSLP does not play a key role in IL-7-independent or FLT3L-independent T lymphopoiesis. Furthermore, whereas previous studies implicated that the role of other cytokine tyrosine kinase receptors in T lymphopoiesis might not involve permissive actions, we demonstrate that ectopic expression of BCL2 is sufficient not only to partially correct the T-cell phenotype of Flt3l(-/-) mice but also to rescue the virtually complete loss of all discernable stages of early T lymphopoiesis in Flt3l(-/-)Il7r(-/-) mice. These findings implicate a permissive role of cytokine receptors of the hematopoietin and tyrosine kinase families in early T lymphopoiesis. 
  •  
18.
  • Kharazi, Shabnam, et al. (författare)
  • Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD-induced myeloproliferation
  • 2011
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 118:13, s. 3613-3621
  • Tidskriftsartikel (refereegranskat)abstract
    • Acquisition of homozygous activating growth factor receptor mutations might accelerate cancer progression through a simple gene-dosage effect. Internal tandem duplications (ITDs) of FLT3 occur in approximately 25% cases of acute myeloid leukemia and induce ligand-independent constitutive signaling. Homozygous FLT3-ITDs confer an adverse prognosis and are frequently detected at relapse. Using a mouse knockin model of Flt3-internal tandem duplication (Flt3-ITD)-induced myeloproliferation, we herein demonstrate that the enhanced myeloid phenotype and expansion of granulocyte-monocyte and primitive Lin(-)Sca1(+)c-Kit(+) progenitors in Flt3-ITD homozygous mice can in part be mediated through the loss of the second wild-type allele. Further, whereas autocrine FLT3 ligand production has been implicated in FLT3-ITD myeloid malignancies and resistance to FLT3 inhibitors, we demonstrate here that the mouse Flt3(ITD/ITD) myeloid phenotype is FLT3 ligand-independent. (Blood. 2011; 118(13):3613-3621)
  •  
19.
  • Kristiansen, Trine A., et al. (författare)
  • Cellular Barcoding Links B-1a B Cell Potential to a Fetal Hematopoietic Stem Cell State at the Single-Cell Level
  • 2016
  • Ingår i: Immunity. - : Elsevier BV. - 1074-7613. ; 45:2, s. 346-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cells (HSCs) undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. Here, we investigated whether the developmental attenuation of B-1a cell output is a consequence of a shift in stem cell state during ontogeny. Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate that the developmental decline in regenerative potential represents a reversible HSC state.
  •  
20.
  • Mansour, Anna, et al. (författare)
  • Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow
  • 2012
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 209:3, s. 537-549
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.
  •  
21.
  • Mead, Adam J., et al. (författare)
  • FLT3-ITDs Instruct a Myeloid Differentiation and Transformation Bias in Lymphomyeloid Multipotent Progenitors
  • 2013
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 3:6, s. 1766-1776
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether signals mediated via growth factor receptors (GFRs) might influence lineage fate in multipotent progenitors (MPPs) is unclear. We explored this issue in a mouse knockin model of gain-of-function Flt3-ITD mutation because FLT3-ITDs are paradoxically restricted to acute myeloid leukemia even though Flt3 primarily promotes lymphoid development during normal hematopoiesis. When expressed in MPPs, Flt3-ITD collaborated with Runx1 mutation to induce high-penetrance aggressive leukemias that were exclusively of the myeloid phenotype. Flt3-ITDs preferentially expanded MPPs with reduced lymphoid and increased myeloid transcriptional priming while compromising early B and T lymphopoiesis. Flt3-ITD-induced myeloid lineage bias involved upregulation of the transcription factor Pu.1, which is a direct target gene of Stat3, an aberrantly activated target of Flt3-ITDs, further establishing how lineage bias can be inflicted on MPPs through aberrant GFR signaling. Collectively, these findings provide new insights into how oncogenic mutations might subvert the normal process of lineage commitment and dictate the phenotype of resulting malignancies.
  •  
22.
  • Moraghebi, Roksana, et al. (författare)
  • Term amniotic fluid : An unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications
  • 2017
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mesenchymal stromal cells (MSCs) are currently being evaluated in numerous pre-clinical and clinical cell-based therapy studies. Furthermore, there is an increasing interest in exploring alternative uses of these cells in disease modelling, pharmaceutical screening, and regenerative medicine by applying reprogramming technologies. However, the limited availability of MSCs from various sources restricts their use. Term amniotic fluid has been proposed as an alternative source of MSCs. Previously, only low volumes of term fluid and its cellular constituents have been collected, and current knowledge of the MSCs derived from this fluid is limited. In this study, we collected amniotic fluid at term using a novel collection system and evaluated amniotic fluid MSC content and their characteristics, including their feasibility to undergo cellular reprogramming. Methods: Amniotic fluid was collected at term caesarean section deliveries using a closed catheter-based system. Following fluid processing, amniotic fluid was assessed for cellularity, MSC frequency, in-vitro proliferation, surface phenotype, differentiation, and gene expression characteristics. Cells were also reprogrammed to the pluripotent stem cell state and differentiated towards neural and haematopoietic lineages. Results: The average volume of term amniotic fluid collected was approximately 0.4 litres per donor, containing an average of 7 million viable mononuclear cells per litre, and a CFU-F content of 15 per 100,000 MNCs. Expanded CFU-F cultures showed similar surface phenotype, differentiation potential, and gene expression characteristics to MSCs isolated from traditional sources, and showed extensive expansion potential and rapid doubling times. Given the high proliferation rates of these neonatal source cells, we assessed them in a reprogramming application, where the derived induced pluripotent stem cells showed multigerm layer lineage differentiation potential. Conclusions: The potentially large donor base from caesarean section deliveries, the high yield of term amniotic fluid MSCs obtainable, the properties of the MSCs identified, and the suitability of the cells to be reprogrammed into the pluripotent state demonstrated these cells to be a promising and plentiful resource for further evaluation in bio-banking, cell therapy, disease modelling, and regenerative medicine applications.
  •  
23.
  •  
24.
  • NozadCharoudeh, Hojjatollah, et al. (författare)
  • Identification of a NK/T cell restricted progenitor in adult bone marrow contributing to bone marrow and thymic-dependent NK cells.
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 116:2, s. 183-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Although bone marrow (BM) is the main site of natural killer (NK)-cell development in adult mice, recent studies have identified a distinct thymic-dependent NK pathway, implicating a possible close link between NK- and T-cell development in adult hematopoiesis. To investigate whether a potential NK-/T-lineage restriction of multipotent progenitors might take place already in the BM, we tested the full lineage potentials of NK-cell progenitors in adult BM. Notably, although Lin(-)CD122(+)NK1.1(-)DX5(-) NK-cell progenitors failed to commit to the B and myeloid lineages, they sustained a combined NK- and T-cell potential in vivo and in vitro at the single-cell level. Whereas T-cell development from NK/T progenitors is Notch-dependent, their contribution to thymic and BM NK cells remains Notch-independent. These findings demonstrate the existence of bipotent NK-/T-cell progenitors in adult BM. (Blood. 2010; 116(2): 183-192)
  •  
25.
  • Safi, Fatemeh, et al. (författare)
  • Concurrent stem- and lineage-affiliated chromatin programs precede hematopoietic lineage restriction
  • 2022
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 39:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The emerging notion of hematopoietic stem and progenitor cells (HSPCs) as a low-primed cloud without sharply demarcated gene expression programs raises the question on how cellular-fate options emerge and at which stem-like stage lineage priming is initiated. Here, we investigate single-cell chromatin accessibility of Lineage-, cKit+, and Sca1+ (LSK) HSPCs spanning the early differentiation landscape. Application of a signal-processing algorithm to detect transition points corresponding to massive alterations in accessibility of 571 transcription factor motifs reveals a population of LSK FMS-like tyrosine kinase 3 (Flt3)intCD9high cells that concurrently display stem-like and lineage-affiliated chromatin signatures, pointing to a simultaneous gain of both lympho-myeloid and megakaryocyte-erythroid programs. Molecularly and functionally, these cells position between stem cells and committed progenitors and display multi-lineage capacity in vitro and in vivo but lack self-renewal activity. This integrative molecular analysis resolves the heterogeneity of cells along hematopoietic differentiation and permits investigation of chromatin-mediated transition between multipotency and lineage restriction.
  •  
26.
  • Singh, Tania, et al. (författare)
  • Loss of MafA and MafB expression promotes islet inflammation.
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Maf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas. Transcriptomics analysis showed expression of pro-inflammatory as well as immune cell marker genes. However, clusters of CD4+ T and B220+ B cells were associated primarily with adult MafA-/-MafB+/-, but not MafA-/- islets. MafA expression was detected in the thymus, lymph nodes and bone marrow suggesting a novel role of MafA in regulating immune-cell function. Analysis of pancreatic lymph node cells showed activation of CD4+ T cells, but lack of CD8+ T cell activation which also coincided with an enrichment of naïve CD8+ T cells. Further analysis of T cell marker genes revealed a reduction of T cell receptor signaling gene expression in CD8, but not in CD4+ T cells, which was accompanied with a defect in early T cell receptor signaling in mutant CD8+ T cells. These results suggest that loss of MafA impairs both beta- and T cell function affecting the balance of peripheral immune responses against islet autoantigens, resulting in local inflammation in pancreatic islets.
  •  
27.
  •  
28.
  • Sitnicka Quinn, Ewa, et al. (författare)
  • Complementary Signaling through flt3 and Interleukin-7 Receptor {alpha} Is Indispensable for Fetal and Adult B Cell Genesis.
  • 2003
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 198:10, s. 1495-1506
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive studies of mice deficient in one or several cytokine receptors have failed to support an indispensable role of cytokines in development of multiple blood cell lineages. Whereas B1 B cells and Igs are sustained at normal levels throughout life of mice deficient in IL-7, IL-7R{alpha}, common cytokine receptor gamma chain, or flt3 ligand (FL), we report here that adult mice double deficient in IL-7R{alpha} and FL completely lack visible LNs, conventional IgM+ B cells, IgA+ plasma cells, and B1 cells, and consequently produce no Igs. All stages of committed B cell progenitors are undetectable in FL-/- x IL-7R{alpha}-/- BM that also lacks expression of the B cell commitment factor Pax5 and its direct target genes. Furthermore, in contrast to IL-7R{alpha}-/- mice, FL-/- x IL-7R{alpha}-/- mice also lack mature B cells and detectable committed B cell progenitors during fetal development. Thus, signaling through the cytokine tyrosine kinase receptor flt3 and IL-7R{alpha} are indispensable for fetal and adult B cell development.
  •  
29.
  • Sitnicka Quinn, Ewa, et al. (författare)
  • Critical role of FLT3 ligand in IL-7 receptor-independent T lymphopoiesis and regulation of lymphoid-primed multipotent progenitors
  • 2007
  • Ingår i: Blood. - Washington, DC : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 110:8, s. 2955-2964
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow (BM) stem/progenitor cells that continuously replace thymic progenitors remain largely unknown. Herein, we show that fms-like tyrosine kinase 3 (Flt3) ligand (Fl)-deficient mice have distinct reductions in the earliest thymic progenitors in fetal, postnatal, and adult thymus. A critical role of FL in thymopoiesis was particularly evident in the absence of interleukin-7 receptor alpha (IL-7Ralpha) signaling. Fl-/-Il-7r-/- mice have extensive reductions in fetal and postnatal thymic progenitors that result in a loss of active thymopoiesis in adult mice, demonstrating an indispensable role of FL in IL-7Ralpha-independent fetal and adult T lymphopoiesis. Moreover, we establish a unique and critical role of FL, distinct from that of IL-7Ralpha, in regulation of the earliest lineage-negative (Lin(-)) Lin(-)SCA1+KIT+ (LSK) FLT3(hi) lymphoid-primed multipotent progenitors in BM, demonstrating a key role of FLT3 signaling in regulating the very earliest stages of lymphoid progenitors.
  •  
30.
  • Sitnicka Quinn, Ewa (författare)
  • Early Cellular Pathways of Mouse Natural Killer Cell Development.
  • 2011
  • Ingår i: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 3:4, s. 329-336
  • Forskningsöversikt (refereegranskat)abstract
    • Natural killer (NK) cells are large granular lymphocytes that are components of the innate immune system. These cells are key players in the defense against viral and other microbial infections and cancer and have an important function during pregnancy, autoimmunity and allergy. Furthermore, NK cells play important roles in hematopoietic stem cell (HSC) transplantation by providing the graft versus leukemia effect and preventing the development of graft versus host disease. Thus, understanding the developmental pathway(s) from multipotent HSCs to the NK cell lineage-restricted progenitors is of significant clinical value. However, despite extensive progress in the delineation of mature blood cell development, including the B- and T-cell lineages, the early stages of NK cell lineage commitment and development have been less well established and characterized. Here, I review the progress made thus far in dissecting the developmental stages, from HSCs in the bone marrow to the lineage-committed NK cells in mouse.
  •  
31.
  • Sitnicka Quinn, Ewa (författare)
  • From the bone marrow to the thymus: the road map of early stages of T-cell development.
  • 2009
  • Ingår i: Critical Reviews in Immunology. - 1040-8401. ; 29:6, s. 487-530
  • Forskningsöversikt (refereegranskat)abstract
    • The thymus produces new T cells throughout life but has no self-renewing ability and requires replenishment and recruitment of progenitors derived from the bone marrow. Despite the progress in delineation of mature blood cell development several questions remain regarding T lymphopoiesis. Understanding the developmental stages from multipotent hematopoietic stem cells (HSCs) to the T-cell lineage-restricted progenitors has many potential clinical implications as it is important for understanding malignant transformation in T-cell cancer, accelerating T-cell regeneration after bone marrow transplantation and chemotherapy, and establishing new therapies to treat T-cell immune deficiencies. This review focuses on the steps leading from the HSCs in the bone marrow to the lineage committed T cells inside the thymus.
  •  
32.
  • Sitnicka Quinn, Ewa, et al. (författare)
  • Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3 : Distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells
  • 2003
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 102:3, s. 881-886
  • Tidskriftsartikel (refereegranskat)abstract
    • The cytokine tyrosine kinase receptors c-kit and flt3 are expressed and function in early mouse and human hematopoiesis. Through its ability to promote ex vivo expansion and oncoretroviral transduction of primitive human hematopoietic progenitors, the flt3 ligand (FL) has emerged as a key stimulator of candidate human hematopoietic stem cells (HSCs). However, recent studies in the mouse suggest that though it is present on short-term repopulating cells, flt3 is not expressed on bone marrow long-term reconstituting HSCs, the ultimate target for the development of cell replacement and gene therapy. Herein we demonstrate that though only a fraction of human adult bone marrow and cord blood CD34+long-term culture-initiating cells (LTC-ICs) express flt3, most cord blood lymphomyeloid HSCs capable of in vivo reconstituting nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice are flt3+. The striking difference in flt3 and c-kit expression on mouse and candidate human HSCs translated into a corresponding difference in flt3 and c-kit function because FL was more efficient than SCF at supporting the survival of candidate human HSCs. In contrast, SCF is far superior to FL as a viability factor for mouse HSCs. Thus, the present data provide compelling evidence for a contrasting expression and response pattern of flt3 and c-kit on mouse and human HSCs.
  •  
33.
  • Sitnicka Quinn, Ewa, et al. (författare)
  • Key Role of flt3 Ligand in Regulation of the Common Lymphoid Progenitor but Not in Maintenance of the Hematopoietic Stem Cell Pool.
  • 2002
  • Ingår i: Immunity. - 1074-7613. ; 17:4, s. 463-472
  • Tidskriftsartikel (refereegranskat)abstract
    • The first lineage commitment step of hematopoietic stem cells (HSC) results in separation into distinct lymphoid and myeloid differentiation pathways, reflected in the generation of common lymphoid and myeloid progenitors (CLP and CMP, respectively). In this report we present the first evidence for a nonredundant regulator of this process, in that adult mice deficient in expression of the flt3 ligand (FL) have severely (10-fold) reduced levels of the CLP, accompanied by reductions in the earliest identifiable B and T cell progenitors. In contrast, CMP and HSC are unaffected in FL-deficient mice. Noteworthy, CLP express high levels of both the flt3 receptor and ligand, indicating a potential autocrine role of FL in regulation of the earliest lymphoid commitment step from HSC.
  •  
34.
  • Svensson Frej, Marcus, et al. (författare)
  • Involvement of CCR9 at multiple stages of adult T lymphopoiesis.
  • 2008
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 1938-3673 .- 0741-5400. ; 83:1, s. 156-164
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemokine CCL25 is constitutively expressed in the thymus, and its receptor CCR9 is expressed on subsets of developing thymocytes. Nevertheless, the function of CCL25/CCR9 in adult thymopoiesis remains unclear. Here, we demonstrate that purified CCR9–/– hematopoietic stem cells are deficient in their ability to generate all major thymocyte subsets including double-negative 1 (DN1) cells in competitive transfers. CCR9–/– bone marrow contained normal numbers of lineage– Sca-1+c-kit+, common lymphoid progenitors, and lymphoid-primed multipotent progenitors (LMPP), and CCR9–/– LMPP showed similar T cell potential as their wild-type (WT) counterparts when cultured on OP9–{delta}-like 1 stromal cells. In contrast, early thymic progenitor and DN2 thymocyte numbers were reduced in the thymus of adult CCR9–/– mice. In fetal thymic organ cultures (FTOC), CCR9–/– DN1 cells were as efficient as WT DN1 cells in generating double-positive (DP) thymocytes; however, under competitive FTOC, CCR9–/– DP cell numbers were reduced significantly. Similarly, following intrathymic injection into sublethally irradiated recipients, CCR9–/– DN cells were out-competed by WT DN cells in generating DP thymocytes. Finally, in competitive reaggregation thymic organ cultures, CCR9–/– preselection DP thymocytes were disadvantaged significantly in their ability to generate CD4 single-positive (SP) thymocytes, a finding that correlated with a reduced ability to form TCR-MHC-dependent conjugates with thymic epithelial cells. Together, these results highlight a role for CCR9 at several stages of adult thymopoiesis: in hematopoietic progenitor seeding of the thymus, in the DN-DP thymocyte transition, and in the generation of CD4 SP thymocytes.
  •  
35.
  • Tang, Yanjuan, et al. (författare)
  • Emergence of NK cell progenitors and functionally competent NK cell lineage subsets in the early mouse embryo.
  • 2012
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 120:1, s. 63-75
  • Tidskriftsartikel (refereegranskat)abstract
    • The earliest stages of natural killer (NK) cell development are not well characterized. In this study, we investigated in different fetal hematopoietic tissues how NK cell progenitors and their mature NK cell progeny emerge and expand during fetal development. Here we demonstrate, for the first time, that the counterpart of adult bone marrow Lin(-)CD122(+)NK1.1(-)DX5(-) NK cell progenitor (NKP) emerges in the fetal liver at embryonic day (E) 13.5. Following NKP expansion, immature NK cells emerge at day E14.5 in the liver and E15.5 in the spleen. Thymic NK cells arise at day E15.5, while functionally competent cytotoxic NK cells were present in the liver and spleen at day E16.5 and E17.5, respectively. Fetal NKPs failed to produce B and myeloid cells, but sustained combined NK and T lineage potential at the single cell level. NKPs were also found in the fetal blood, spleen and thymus. These findings demonstrate the emergence and expansion of bipotent NK/T cell progenitor during fetal and adult lymphopoiesis, further supporting that NK/T lineage restriction is taking place prethymically. Uncovering the earliest NK cell developmental stages will provide important clues helping to understand the origin of diverse NK cell subsets, their progenitors and key regulators.
  •  
36.
  •  
37.
  • Zriwil, Alya, et al. (författare)
  • Direct role of FLT3 in regulation of early lymphoid progenitors
  • 2018
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 183:4, s. 588-600
  • Tidskriftsartikel (refereegranskat)abstract
    • Given that FLT3 expression is highly restricted on lymphoid progenitors, it is possible that the established role of FLT3 in the regulation of B and T lymphopoiesis reflects its high expression and role in regulation of lymphoid-primed multipotent progenitors (LMPPs) or common lymphoid progenitors (CLPs). We generated a Flt3 conditional knock-out (Flt3fl/fl) mouse model to address the direct role of FLT3 in regulation of lymphoid-restricted progenitors, subsequent to turning on Rag1 expression, as well as potentially ontogeny-specific roles in B and T lymphopoiesis. Our studies establish a prominent and direct role of FLT3, independently of the established role of FLT3 in regulation of LMPPs and CLPs, in regulation of fetal as well as adult early B cell progenitors, and the early thymic progenitors (ETPs) in adult mice but not in the fetus. Our findings highlight the potential benefit of targeting poor prognosis acute B-cell progenitor leukaemia and ETP leukaemia with recurrent FLT3 mutations using clinical FLT3 inhibitors.
  •  
38.
  • Zriwil, Alya, et al. (författare)
  • Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice
  • 2016
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 128:2, s. 217-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19+ B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R+CD19+ ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R+ myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R+ myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-38 av 38
Typ av publikation
tidskriftsartikel (33)
forskningsöversikt (3)
konferensbidrag (1)
patent (1)
Typ av innehåll
refereegranskat (36)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Sitnicka Quinn, Ewa (27)
Jacobsen, Sten Eirik ... (24)
Buza-Vidas, Natalija (11)
Bryder, David (9)
Jensen, Christina (6)
Hultquist, Anne (4)
visa fler...
Cilio, Corrado (4)
Nerlov, Claus (4)
Adolfsson, Jörgen (3)
Sasaki, Yutaka (3)
Sigvardsson, Mikael (3)
Agace, William (3)
Månsson, Robert (2)
Liuba, Karina (2)
Yang, Liping (2)
Borge, O-J (2)
Ahlenius, Henrik (2)
Leandersson, Karin (2)
Karlsson, Stefan (2)
Friberg, Danielle (1)
Kirkeby, Agnete (1)
Lakshmikanth, Tadepa ... (1)
Brodin, Petter (1)
Nilsson, Lars (1)
Fex, Malin (1)
Karlsson, Göran (1)
Rydén, Tobias (1)
Enver, Tariq (1)
Parmar, Malin (1)
Johansson, Emil (1)
Thorén, Lina (1)
Anderson, Kristina (1)
Theilgaard-Monch, K (1)
Åstrand-Grundström, ... (1)
Larsson, Staffan (1)
Herbst, Andreas (1)
Pereira, Carlos-Fili ... (1)
Rönnstrand, Lars (1)
Deng, Qiaolin (1)
Prasad, Rashmi B. (1)
Massoumi, Ramin (1)
Dudenhöffer-Pfeifer, ... (1)
Holmberg, Dan (1)
Björklund, Tomas (1)
Sarmiento, Luis (1)
Sandberg, Rickard (1)
Brakebusch, Cord (1)
Marsal, Jan (1)
Artner, Isabella (1)
Rusterholz, Corinne (1)
visa färre...
Lärosäte
Lunds universitet (38)
Karolinska Institutet (10)
Linköpings universitet (4)
Högskolan i Halmstad (2)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Språk
Engelska (38)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (36)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy