SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skacel P.) "

Sökning: WFRF:(Skacel P.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Polzer, S., et al. (författare)
  • Importance of material model in wall stress prediction in abdominal aortic aneurysms
  • 2013
  • Ingår i: Medical Engineering and Physics. - : Elsevier BV. - 1350-4533 .- 1873-4030. ; 35:9, s. 1282-1289
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Results of biomechanical simulation of the abdominal aortic aneurysm (AAA) depend on the constitutive description of the wall. Based on in vitro and in vivo experimental data several constitutive models for the AAA wall have been proposed in the literature. Those models differ strongly from each other and their impact on the computed stress in biomechanical simulation is not clearly understood. Methods: Finite element (FE) models of AAAs from 7 patients who underwent elective surgical repair were used to compute wall stresses. AAA geometry was reconstructed from CT angiography (CT-A) data and patient-specific (PS) constitutive descriptions of the wall were derived from planar biaxial testing of anterior wall tissue samples. In total 28 FE models were used, where the wall was described by either patient-specific or previously reported study-average properties. This data was derived from either uniaxial or biaxial in vitro testing. Computed wall stress fields were compared on node-by-node basis. Results: Different constitutive models for the AAA wall cause significantly different predictions of wall stress. While study-average data from biaxial testing gives globally the same stress field as the patient-specific wall properties, the material model based on uniaxial test data overestimates the wall stress on average by 30. kPa or about 67% of the mean stress. A quasi-linear description based on the in vivo measured distensibility of the AAA wall leads to a completely altered stress field and overestimates the wall stress by about 75. kPa or about 167% of the mean stress. Conclusion: The present study demonstrated that the constitutive description of the wall is crucial for AAA wall stress prediction. Consequently, results obtained using different models should not be mutually compared unless different stress gradients across the wall are not taken into account. Highly nonlinear material models should be preferred when the response of AAA to increased blood pressure is investigated, while the quasi-linear model with high initial stiffness produces negligible stress gradients across the wall and thus, it is more appropriate when response to mean blood pressure is calculated.
  •  
3.
  • Polzer, S., et al. (författare)
  • Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue
  • 2015
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 14, s. 133-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Structure-based constitutive models might help in exploring mechanisms by which arterial wall histology is linked to wall mechanics. This study aims to validate a recently proposed structure-based constitutive model. Specifically, the model's ability to predict mechanical biaxial response of porcine aortic tissue with predefined collagen structure was tested. Histological slices from porcine thoracic aorta wall (n = 9) were automatically processed to quantify the collagen fiber organization, and mechanical testing identified the non-linear properties of the wall samples (n = 18) over a wide range of biaxial stretches. Histological and mechanical experimental data were used to identify the model parameters of a recently proposed multi-scale constitutive description for arterial layers. The model predictive capability was tested with respect to interpolation and extrapolation. Collagen in the media was predominantly aligned in circumferential direction (planar von Mises distribution with concentration parameter b(M) = 1.03 +/- 0.23), and its coherence decreased gradually from the luminal to the abluminal tissue layers (inner media, b = 1.54 +/- 0.40; outer media, b = 0.72 +/- 0.20). In contrast, the collagen in the adventitia was aligned almost isotropically (b(A) = 0.27 +/- 0.11), and no features, such as families of coherent fibers, were identified. The applied constitutive model captured the aorta biaxial properties accurately (coefficient of determination R-2 = 0.95 +/- 0.03) over the entire range of biaxial deformations and with physically meaningful model parameters. Good predictive properties, well outside the parameter identification space, were observed (R-2 = 0.92 +/- 0.04). Multi-scale constitutive models equipped with realistic micro-histological data can predict macroscopic non-linear aorta wall properties. Collagen largely defines already low strain properties of media, which explains the origin of wall anisotropy seen at this strain level. The structure and mechanical properties of adventitia are well designed to protect the media from axial and circumferential overloads.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy