SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skogby Henrik) "

Sökning: WFRF:(Skogby Henrik)

  • Resultat 1-50 av 120
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sallstedt, Therese, et al. (författare)
  • Instant Attraction : Clay Authigenesis in Fossil Fungal Biofilms
  • 2019
  • Ingår i: Geosciences. - Basel : MDPI. - 2076-3263. ; 9:9, s. 1-21
  • Forskningsöversikt (refereegranskat)abstract
    • Clay authigenesis associated with the activity of microorganisms is an important process for biofilm preservation and may provide clues to the formation of biominerals on the ancient Earth. Fossilization of fungal biofilms attached to vesicles or cracks in igneous rock, is characterized by fungal-induced clay mineralization and can be tracked in deep rock and deep time, from late Paleoproterozoic (2.4 Ga), to the present. Here we briefly review the current data on clay mineralization by fossil fungal biofilms from oceanic and continental subsurface igneous rock. The aim of this study was to compare the nature of subsurface fungal clays from different igneous settings to evaluate the importance of host rock and ambient redox conditions for clay speciation related to fossil microorganisms. Our study suggests that the most common type of authigenic clay associated with pristine fossil fungal biofilms in both oxic (basaltic) and anoxic (granitic) settings are montmorillonite-like smectites and confirms a significant role of fungal biofilms in the cycling of elements between host rock, ocean and secondary precipitates. The presence of life in the deep subsurface may thus prove more significant than host rock geochemistry in directing the precipitation of authigenic clays in the igneous crust, the extent of which remains to be fully understood.
  •  
2.
  •  
3.
  •  
4.
  • Ali, Sk Imran, et al. (författare)
  • Synthesis and Magnetic Properties of the Ternary Oxofluoride Fe3Sb4O6F6
  • 2020
  • Ingår i: European Journal of Inorganic Chemistry. - : Wiley. - 1434-1948 .- 1099-1948 .- 1099-0682. ; 2020:39, s. 3746-3752
  • Tidskriftsartikel (refereegranskat)abstract
    • The new compound Fe(3)Sb(4)O(6)F(6)was prepared by hydrothermal synthesis and its crystal structure was determined from single-crystal X-ray diffraction data. The synthesis was made under slightly basic conditions to prevent oxidation of Fe(2+)to Fe3+. The compound crystallizes in the cubic space groupI-43mwith separate crystallographic sites for Fe(2+)and Sb3+. Fe(3)Sb(4)O(6)F(6)is isostructural with M3Sb4O6F6(M = Co, Ni, Zn). The crystal structure is comprising distorted [FeO2F4] octahedra connected via corner sharing at F-atoms and [SbO3] trigonal pyramids that form [Sb4O6] units that connect via O-atoms to the Fe-atoms. Mossbauer spectroscopy measurements on the hydrothermal synthesis products prove the majority phase contains Fe in the oxidation state +2. Powder X-ray diffraction suggests that an additional phase of the Mossbauer sample containing Fe(3+)can be attributed to FeSbO(2)F(2)as secondary phase. Fe(3)Sb(4)O(6)F(6)exhibits antiferromagnetic order below ca. 72 K succeeded by a second magnetic phase transition at ca. 30 K. Strong antiferromagnetic spin-exchange interaction is attributed to 180 degrees Fe-F-Fe superexchange pathways identified in the crystal structure.
  •  
5.
  • Allard, Bert, 1945-, et al. (författare)
  • Metal Exchangeability in the REE-Enriched Biogenic Mn Oxide Birnessite from Ytterby, Sweden
  • 2023
  • Ingår i: Minerals. - : MDPI. - 2075-163X. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • A black substance exuding from fractures was observed in 2012 in Ytterby mine, Sweden, and identified in 2017 as birnessite with the composition Mx[Mn(III,IV)](2)O-4 center dot(H2O)n. M is usually calcium and sodium, with x around 0.5. The Ytterby birnessite is unique, with M being calcium, magnesium, and also rare earth elements (REEs) constituting up to 2% of the total metal content. The biogenic origin of the birnessite was established in 2018. Analysis of the microbial processes leading to the birnessite formation and the REE enrichment has continued since then. The process is fast and dynamic, as indicated by the depletion of manganese and of REE and other metals in the fracture water during the passage over the precipitation zone in the mine tunnel. Studies of the exchangeability of metals in the structure are the main objective of the present program. Exposure to solutions of sodium, calcium, lanthanum, and iron led to exchanges and altered distribution of the metals in the birnessite, however, generating phases with almost identical structures after the exchanges, and no new mineral phases were detected. Exchangeability was more efficient for trivalent elements (REE) over divalent (calcium) and monovalent (sodium) elements of a similar size (ionic radii 90-100 pm).
  •  
6.
  • Allard, Bert, et al. (författare)
  • On the formation and metal exchangeability of the rare earth element enriched birnessite from the Ytterby mine, Sweden
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A porous black substance exuding from fractures in an underground tunnel leading to the shaft of the Ytterby mine, Sweden, was observed in 2012 and characterized as a secondary manganese (Mn) oxide in 2015. The oxide was identified in 2017 as a birnessite variety, Mx[Mn(III,IV)]2O4∙(H2O)n  where M usually is Ca, Na and x is around 0.5, but the Ytterby birnessite appears to be unique with M being Ca, Mg but also yttrium and rare earth elements (YREE), constituting up to 2% of the metal content. The biogenic origin of the Ytterby birnessite was established in 2018. Studies of the formation of this unique birnessite phase has progressed during 2018-19 with detailed studies of the hydrochemistry of the fracture water as well of the exchangeability of the metals M in the structure: Na, Ca, Fe and La representing the YREE. Exposure to solutions of  Na, Ca, Fe, and La, respectively (1 M) led to exchanges and altered distribution of the metals constituting M, with a preference of YREE (trivalent) over Ca (divalent) over Na (monovalent), all of similar ionic radii, as well as higher affinity for YREE over Fe(III), being smaller. Fe(III) did not replace Mn(III) in the structure, despite the fact that their radii are almost identical. No discrete new Fe phase was indicated, and the structure of the birnessite phase was almost identical after exchanges of M, as indicated from XRD. The formation of birnessite in the fracture opening on the tunnel wall appears to be a fast and dynamic process, as indicated by a significant depletion of Mn as well as of YREE in the fracture water during the passage over the precipitation zone, from top to bottom.
  •  
7.
  • Altieri, Alessandra, et al. (författare)
  • Blue growth zones caused by Fe2+ in tourmaline crystals from the San Piero in Campo gem-bearing pegmatites, Elba Island, Italy
  • 2022
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 86:6, s. 910-919
  • Tidskriftsartikel (refereegranskat)abstract
    • Two tourmaline crystals with a blue growth zone at the analogous pole, respectively from the San Silvestro and the Fucili pegmatites, located in the San Piero in Campo village, Elba Island (Tyrrhenian Sea, Italy), have been described for the first time using compositional and spectroscopic data to define their crystal-chemical aspects and the causes of the colour. Compositional data obtained by electron microprobe analysis indicate that both tourmalines belong to the elbaite–fluor-elbaite series. The upper part of each crystal is characterised by an increased amount of Fe (FeO up to ~1 wt.%) and a Ti content below the detection limit. Optical absorption spectra recorded on the blue zone of both samples show absorption bands caused by spin-allowed d-d transitions in [6]-coordinated Fe2+, and no intervalence charge transfer Fe2+-Ti interactions, indicating that Fe2+ is the only chromophore. Mössbauer analysis of the blue zone of the Fucili sample confirmed the Fe2+ oxidation state, implying that the redox conditions in the crystallisation environment were relatively reducing. The presence of colour changes at the analogous termination during tourmaline crystal growth suggests a change in the composition of the crystallisation environment, probably associated with a partial opening of the system.
  •  
8.
  • Altieri, Alessandra, et al. (författare)
  • Dark-coloured Mn-rich overgrowths in an elbaitic tourmaline crystal from the Rosina pegmatite, San Piero in Campo, Elba Island, Italy: witness of late-stage opening of the geochemical system
  • 2023
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 87:1, s. 130-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Multicoloured tourmalines from Elba Island, commonly display dark-coloured terminations due to incorporation of Fe, and also occasionally Mn. The mechanisms which led to the availability of these elements in the late-stage residual fluids are not yet completely understood. For this purpose, we investigated a representative tourmaline crystal found naturally in two fragments within a wide miarolitic cavity in the Rosina pegmatite (San Piero in Campo, Elba Island, Italy), and characterised by late-stage dark-coloured overgrowths. Microstructural and paragenetic observations, together with compositional and spectroscopic data (electron microprobe and optical absorption spectroscopy), provide evidence which shows that the formation of the dark-coloured Mn-rich overgrowths are the result of a pocket rupture. This event caused alteration of the cavity-coating spessartine garnet by highly-reactive late-stage cavity fluids by leaching processes, with the subsequent release of Mn to the residual fluids. We argue that the two fragments were originally a single crystal, which underwent natural breakage followed by the simultaneous growth of Mn-rich dark terminations at both breakage surfaces. This conclusion supports the evidence for a pocket rupture event, responsible for both the shattering of the tourmaline crystal and the compositional variation of the cavity-fluids related to the availability of Mn, which was incorporated by the tourmaline crystals. Additionally, a comparison of the dark overgrowths formed at the analogous and the antilogous poles, provides information on tourmaline crystallisation at the two different poles. The antilogous pole is characterised by a higher affinity for Ca, F and Ti, and a selective uptake of Mn2+, even in the presence of a considerable amount of Mn3+ in the system. This uneven uptake of Mn ions resulted in the yellow–orange colouration of the antilogous overgrowth (Mn2+ dependent) rather than the purple-reddish colour of the analogous overgrowths (Mn3+ dependent).
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Bernardi, Francesco, et al. (författare)
  • OH-Defects in Detrital Quartz Grains from the Julian Basin (NE Italy and Slovenia): A Fourier Transform Infrared Study
  • 2022
  • Ingår i: Geosciences. - : MDPI AG. - 2076-3263. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we analyzed up to 80 detrital quartz grains from four lithic greywackes along the stratigraphic column of the Julian Basin, a synorogenic basin in the southeastern Alps between Italy and Slovenia. Fourier transform infrared spectroscopy of detrital quartz was used to investigate the sample set with interest to its OH-defect speciation and content of each associated substitution. According to several recent studies, OH-defects in quartz are correlated to petrogenetic conditions of the source material and can be used as a provenance tool. The aim of this study is to compare results based on this method with previous studies that used other methods, to better constrain the palaeogeographical reconstruction of sedimentary fluxes. Detrital quartz within the samples of the basin shows different patterns of OH-defects and water content, indicating substantial petrogenetic differences between the sediment source rocks. For the oldest analyzed sample (ca. 66 Ma), the distribution of OH-defects suggests a mixed source between igneous and non-igneous rocks, with a predominance of metamorphic material supply. Another sample (56 Ma) reveals a great variability of OH-defects and water content, indicating that the magmatic component dominates over the metamorphic component. The distribution of OH-defects in the samples at the top of the sequence (52–53 Ma) suggests an almost solely metamorphic source. These results are in line with previous studies based on heavy minerals and geochemistry.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Bosi, Ferdinando, et al. (författare)
  • Crystal chemistry of spinels in the system MgAl2O4-MgV2O4-Mg2VO4
  • 2016
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 101, s. 580-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Eight spinel single-crystal samples belonging to the spinel sensu stricto-magnesiocoulsonite series (MgAl2O4-MgV2O4) were synthesized and crystal-chemically characterized by X‑ray diffraction, electron microprobe and optical absorption spectroscopy. Site populations show that the tetrahedrally coordinated site (T) is populated by Mg and minor Al for the spinel sensu stricto compositions, and only by Mg for the magnesiocoulsonite compositions, while the octahedrally coordinated site (M) is populated by Al, V3+, minor Mg, and very minor amounts of V4+. The latter occurs in appreciable amounts in the Al-free magnesium vanadate spinel, T(Mg)M(Mg0.26V3+1.48V4+0.26)O4, showing the presence of the inverse spinel VMg2O4. The studied samples are characterized by substitution of Al3+ for V3+ and (Mg2++V4+) for 2V3+ described in the system MgAl2O4-MgV2O4-VMg2O4.The present data in conjunction with data from the literature provide a basis for quantitative analyses of two solid-solution series MgAl2O4-MgV23+O4 and MgV23+O4-V4+Mg2O4. Unit-cell parameter increases with increasing V3+ along the series MgAl2O4-MgV2O4 (8.085–8.432 Å), but only slightly increases with increasing V3+ along the series VMg2O4-MgV2O4 (8.386–8.432 Å). Although a solid solution could be expected between the MgAl2O4 and VMg2O4 end-members, no evidence was found. Amounts of V4+ are nearly insignificant in all synthetic Al-bearing vanadate spinels, but are appreciable in Al-free vanadate spinel.An interesting observation of the present study is that despite the observed complete solid-solution along the MgAl2O4-MgV2O4 and MgV2O4-VMg2O4 series, the spinel structure seems to be unable to stabilize V4+ in any intermediate members on the MgAl2O4-Mg2VO4 join even at high oxygen fugacities. This behavior indicates that the accommodation of specific V-valences can be strongly influenced by crystal-structural constraints, and any evaluation of oxygen fugacities during mineral formation based exclusively on V cation valence distributions in spinel should be treated with caution. The present study underlines that the V valency distribution in spinels is not exclusively reflecting oxygen fugacities, but also depends on activities and solubilities of all chemical components in the crystallization environment.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Bosi, Ferdinando, et al. (författare)
  • Experimental cation redistribution in the tourmaline lucchesiite, CaFe2+3Al6(Si6O18)(BO3)3(OH)3O
  • 2018
  • Ingår i: Physics and chemistry of minerals. - : Springer Science and Business Media LLC. - 0342-1791 .- 1432-2021. ; 45:7, s. 621-632
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural Mg-rich lucchesiite was thermally treated in air and hydrogen atmosphere up to 800 °C to study potential changes in Fe-, Mg- and Al ordering over the octahedrally coordinated Y-  and Z -sites, and to explore possible applications to intracrystalline geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that thermal treatment of lucchesiite results in an increase of Fetot contents at Z balanced by an increase of Mg and Al at Y . This process is accompanied by a significant deprotonation of the O3 anion site. The Fe order–disorder reaction depends more on temperature, than on redox conditions. During heat treatment in H2 ,reduction of Fe3+ to Fe2+ was not observed despite strongly reducing conditions, indicating that the fO2  conditions do not exclusively control the Fe oxidation state at the present experimental conditions. On the basis of this and previous studies, the intersite order–disorder process induced by thermal treatment indicates that Fe redistribution is an important factor for Fe–Mg–Al-exchange and is significant at temperatures around 800 °C. As a result, Fe–Mg–Al intersite order–disorder is sensitive to temperature variations, whereas geothermometers based solely on Mg–Al order–disorder appear insensitive and involve large uncertainties. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks, and indicate that successful tourmaline geothermometers may be developed by thermal calibration of the Fe-Mg–Al order–disorder reaction.
  •  
25.
  • Bosi, Ferdinando, et al. (författare)
  • Experimental evidence for partial Fe2+ disorder at the Y and Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl
  • 2015
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 79:3, s. 515-528
  • Tidskriftsartikel (refereegranskat)abstract
    • An experimental study of an Al-rich schorl sample from Cruzeiro mine (Minas Gerais, Brazil) was carried out using electron microprobe analysis, structural refinement and Mössbauer, infrared and optical absorption spectroscopy in order to explore the disordering of Fe2+ over the Y and Z sites of the tourmaline structure.A structural formula was obtained by merging chemical and structural data. The cation distribution at the two non-equivalent octahedrally coordinated sites (Y and Z) was obtained by two different optimization procedures which, minimizing the residuals between observed and calculated data, converged to the formula: X(Na0.65〈0.32Ca0.02K0.01)Σ1.00Y(Fe1.652+Al1.15Fe0.063+Mn0.052+Zn0.05Ti0.044+)Σ3.00Z(Al5.52Fe0.302+Mg0.18)Σ6.00[T(Si5.87Al0.13)Σ6.00O18](BBO3)3V(OH)3W[(OH)0.34F0.28O0.38]Σ1.00.This result shows a partial disordering of Fe2+ over the Y and Z sites which explains adequately the mean atomic number observed for the Z site (13.5±0.1). Such a disordering is also in line with the shoulder recorded in the Mössbauer spectrum (fitted by a doublet with isomer shift of 1.00 mm/s and quadrupole splitting of 1.38 mm/s) as well as with the asymmetric bands recorded in the optical absorption spectrum at ∼9000 and 14,500 cm–1 (modelled by four Gaussian bands, centred at 7677 and 9418 cm–1, and 13,154 and 14,994 cm–1, respectively).The high degree of consistency in the results obtained using the different methods suggests that the controversy over Fe2+ order can be ascribed to the failure to detect small amounts of Fe2+ at Z (typically <<10% atoms/site) rather than a steric effect of Fe2+ on the tourmaline structure.
  •  
26.
  • Bosi, Ferdinando, et al. (författare)
  • Late magmatic controls on the origin of schorlitic and foititic tourmalines from late-Variscan peraluminous granites of the Arbus pluton (SW Sardinia, Italy) : Crystal-chemical study and petrological constraints
  • 2018
  • Ingår i: Lithos. - : Elsevier BV. - 0024-4937 .- 1872-6143. ; 308-309, s. 395-411
  • Tidskriftsartikel (refereegranskat)abstract
    • Tourmalines from the late-Variscan Arbus pluton (SW Sardinia) and its metamorphic aureole were structurally and chemically characterized by single-crystal X-ray diffraction, electron and nuclear microprobe analysis, Mössbauer, infrared and optical absorption spectroscopy, to elucidate their origin and relationships with the magmatic evolution during the pluton cooling stages. The Arbus pluton represents a peculiar shallow magmatic system, characterized by sekaninaite (Fe-cordierite)-bearing peraluminous granitoids, linked via AFC processes to gabbroic mantle-derived magmas. The Fe2+-Al-dominant tourmalines occur in: a) pegmatitic layers and pods, as prismatic crystals; b) greisenized rocks and spotted granophyric dikes, as clots or nests of fine-grained crystals in small miaroles locally forming orbicules; c) pegmatitic veins and pods close to the contacts within the metamorphic aureole. Structural formulae indicate that tourmaline in pegmatitic layers is schorl, whereas in greisenized rocks it ranges from schorl to fluor-schorl. Tourmalines in thermometamorphosed contact aureole are schorl, foitite and Mg-rich oxy-schorl. The main substitution is Na + Fe2+ ↔ □ + Al, which relates schorl to foitite. The homovalent substitution (OH) ↔ F at the O1 crystallographic site relates schorl to fluor-schorl, while the heterovalent substitution Fe2+ + (OH, F) ↔ Al + O relates schorl/fluor-schorl to oxy-schorl. Tourmaline crystallization in the Arbus pluton was promoted by volatile (B, F and H2O) enrichment, low oxygen fugacity and Fe2+ activity. The mineralogical evolutive trend is driven by decreasing temperature, as follows: sekaninaite + quartz → schorl + quartz → fluor-schorl + quartz → foitite + quartz. The schorl → foitite evolution represents a distinct trend towards (Al + □) increase and unit-cell volume decrease. These trends are typical of granitic magmas and consistent with Li-poor granitic melts, as supported by the absence of elbaite and other Li-minerals in the Arbus pluton. Tourmaline-bearing rocks reflect the petrogenetic significance of contribution from a metapelitic crustal component during the evolution of magmas in the middle-upper crust.
  •  
27.
  • Bosi, Ferdinando, et al. (författare)
  • Lowering R3m Symmetry in Mg-Fe-Tourmalines: The Crystal Structures of Triclinic Schorl and Oxy-Dravite, and the Mineral luinaite-(OH) Discredited
  • 2022
  • Ingår i: Minerals. - : MDPI AG. - 2075-163X. ; 12:4, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Discreditation of the monoclinic tourmaline mineral species luinaite-(OH), ideally (Na,▯)(Fe2+,Mg)3Al6(BO3)3Si6O18(OH)4 was approved by the IMA-CNMNC (proposal 21-L) and is described. We analyzed two luinaite-(OH) samples: one from the type locality Cleveland tin mine, Luina, Waratah, Tasmania, Australia, and the other from Blue Mountain Saddle (Bald Hornet Claim), North Bend, King County, Washington, DC, USA. Biaxial (−) crystals representative of the studied samples were spectroscopically (Mössbauer, polarized Fourier transform infrared, optical absorption spectroscopy), chemically (nuclear microprobe analysis and electron microprobe analysis), and structurally characterized (single-crystal X-ray diffraction). Results show the occurrence of a triclinic structure for the studied luinaite-(OH) samples, which differs only in terms of a slight structural distortion from typical trigonal tourmaline structure (the topology of the structure is retained). As a result, following the IMA-CNMNC and tourmaline nomenclature rules, the triclinic luinaite-(OH) from the type locality (Australia) can be considered as the triclinic dimorph of schorl, as its chemical composition corresponds to schorl, and thus it should be referred as schorl-1A. Similarly, the triclinic sample from the USA can be considered as the triclinic dimorph of oxy-dravite, as its chemical composition corresponds to oxy-dravite, and then is referred to as oxy-dravite-1A.
  •  
28.
  •  
29.
  • Bosi, Ferdinando, et al. (författare)
  • Mn-bearing purplish-red tourmaline from the Anjanabonoina pegmatite, Madagascar
  • 2021
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 85:2, s. 242-253
  • Tidskriftsartikel (refereegranskat)abstract
    • A gem-quality purplish-red tourmaline sample of alleged liddicoatitic composition from the Anjanabonoina pegmatite, Madagascar, hasbeen fully characterised using a multi-analytical approach to define its crystal-chemical identity. Single-crystal X-ray diffraction, chem-ical and spectroscopic analysis resulted in the formula: X(Na0.41□0.35Ca0.24)Σ1.00Y(Al1.81Li1.00Fe3+0.04Mn3+0.02Mn2+0.12Ti0.004)Σ3.00ZAl6[T(Si5.60B0.40)Σ6.00O18](BO3)3(OH)3W[(OH)0.50F0.13O0.37]Σ1.00, which corresponds to the tourmaline species elbaite having the typical space group R3m and relatively small unit-cell dimensions, a= 15.7935(4) Å, c= 7.0860(2) Å and V= 7.0860(2) Å3.Optical absorption spectroscopy showed that the purplish-red colour is caused by minor amounts of Mn3+(Mn2O3= 0.20 wt.%).Thermal treatment in air up to 750°C strongly intensified the colour of the sample due to the oxidation of all Mn2+ to Mn3+ (Mn2O3 up to 1.21 wt.%). Based on infrared and Raman data, a crystal-chemical model regarding the electrostatic interaction betweenthe X cation and W anion, and involving the Y cations as well, is proposed to explain the absence or rarity of the mineral species ‘liddicoatite’.
  •  
30.
  •  
31.
  • Bosi, Ferdinando, et al. (författare)
  • Oxy-foitite, □(Fe2+Al2)Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup
  • 2017
  • Ingår i: European journal of mineralogy. - : Schweizerbart. - 0935-1221 .- 1617-4011. ; 29:5, s. 889-896
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxy-foitite, □(Fe2+Al2)Al6(Si6O18)(BO3)3(OH)3O, is a new mineral of the tourmaline supergroup. It occurs in high-grade migmatitic gneisses of pelitic composition at the Cooma metamorphic Complex (New South Wales, Australia), in association with muscovite, K-feldspar and quartz. Crystals are black with a vitreous luster, sub-conchoidal fracture and gray streak. Oxy-foitite has a Mohs hardness of ∼7, and has a calculated density of 3.143 g/cm3. In plane-polarized light, oxy-foitite is pleochroic (O= dark brown and E = pale brown), uniaxial negative. Oxy-foitite belongs to the trigonal crystal system, space group R3m, a = 15.9387(3) Å, c = 7.1507(1)Å and V = 1573.20(6)Å3,Z = 3. The crystal structure of oxy-foitite was refined to R1 = 1.48% using 3247 unique reflections from single-crystal X-ray diffraction using MoKα radiation. Crystal-chemical analysis resulted in the empirical structural formula: X(□0.53Na0.45Ca0.01K0.01)Σ1.00Y(Al1.53Fe2+1.16Mg0.22Mn2+0.05Zn0.01Ti4+0.03)Σ3.00Z(Al5.47Fe3+0.14Mg0.39)Σ6.00[(Si5.89Al0.11)Σ6.00O18](BO3)3V(OH)3W[O0.57F0.04(OH)0.39]Σ1.00. Oxy-foitite belongs to the X-site vacant group of the tourmaline-supergroup minerals, and shows chemical relationships with foitite through the substitution YAl3++WO2-→YFe2++W(OH)1–.
  •  
32.
  •  
33.
  • Bosi, Ferdinando, et al. (författare)
  • Princivalleite, Na(Mn2Al)Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup from Veddasca Valley, Varese, Italy
  • 2022
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 86:1, s. 78-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Princivalleite, Na(Mn2Al)Al6(Si6O18)(BO3)3(OH)3O, is a new mineral (IMA2020-056) of the tourmaline supergroup. It occurs in the Veddasca Valley, Luino area, Varese, Lombardy, Italy (46°03’30.74’’N, 8°48’24.47’’E) at the centre of a narrow (2–3 cm wide) vertical pegmatitic vein, a few metres long, crosscutting a lens of flaser gneiss. Crystals are subhedral (up to 10 mm in size), azure with a vitreous lustre, conchoidal fracture and white streak. Princivalleite has a Mohs hardness of ~7, a calculated density of 3.168 g/cm3 and is uniaxial (–). Princivalleite has trigonal symmetry, space group R3m, a = 15.9155(2) Å, c = 7.11660(10) Å, V = 1561.15(4) Å3 and Z = 3. The crystal structure was refined to R1 = 1.36% using 1758 unique reflections collected with MoKα X-ray intensity data. Crystal-chemical analysis resulted in the empirical crystal-chemical formulaX(Na0.54Ca0.11□0.35)Σ1.00Y(Al1.82Mn2+0.84Fe2+0.19Zn0.07Li0.08)Σ3.00Z(Al5.85Fe2+0.13Mg0.02)Σ6.00[T(Si5.60Al0.40)Σ6.00O18](BO3)3O(3)[(OH)2.71O0.29]Σ3.00O(1)[O0.66F0.22(OH)0.12]Σ1.00 which recast in its ordered form for classification purposes is:X(Na0.54Ca0.11□0.35)Σ1.00Y(Al1.67Mn2+0.84Fe2+0.32Zn0.07Mg0.02Li0.08)Σ3.00ZAl6.00[T(Si5.60Al0.40)Σ6.00O18](BO3)3V[(OH)2.71O0.29]Σ3.00W[O0.66F0.22(OH)0.12]Σ1.00.Princivalleite is an oxy-species belonging to the alkali group of the tourmaline supergroup. The closest end-member compositions of valid tourmaline species are those of oxy-schorl and darrellhenryite, to which princivalleite is related by the substitutions Mn2+ ↔ Fe2+ and Mn2+ ↔ 0.5Al3+ + 0.5Li+, respectively. Princivalleite from Veddasca Valley is a geochemical anomaly, originated in a B-rich and peraluminous anatectic pegmatitic melt formed in situ, poor in Fe and characterised by reducing conditions in the late-stage metamorphic fluids derived by the flaser gneiss. The Mn-enrichment in this new tourmaline is due to absence of other minerals competing for Mn such as garnet.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  • Bosi, Ferdinando, et al. (författare)
  • Thermally induced cation redistribution in Fe‑bearing oxy‑dravite and potential geothermometric implications
  • 2016
  • Ingår i: Contributions to Mineralogy and Petrology. - : Springer Science and Business Media LLC. - 0010-7999 .- 1432-0967. ; 171:5, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron-bearing oxy-dravite was thermally treated in air and hydrogen atmosphere at 800 °C to study potential changes in Fe, Mg and Al ordering over the octahedrally coordinated Y and Z sites and to explore possible applications to intersite geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that heating Fe-bearing tourmalines results in disordering of Fe over Y and Z balanced by ordering of Mg at Y, whereas Al does not change appreciably. The Fe disorder depends on temperature, but less on redox conditions. The degree of Fe3+–Fe2+ reduction is limited despite strongly reducing conditions, indicating that the fO2 conditions do not exclusively control the Fe oxidation state at the present experimental conditions. Untreated and treated samples have similar short- and long-range crystal structures, which are explained by stable Al-extended clusters around the O1 and O3 sites. In contrast to the stable Al clusters that preclude any temperature-dependent Mg–Al order– disorder, there occurs Mg diffusion linked to temperaturedependent exchange with Fe. Ferric iron mainly resides around O2− at O1 rather than (OH)−, but its intersite disorder induced by thermal treatment indicates that Fe redistribution is the driving force for Mg–Fe exchange and that its diffusion rates are significant at these temperatures. With increasing temperature, Fe progressively disorders over Y and Z, whereas Mg orders at Y according to the order–disorder reaction: YFe + ZMg → ZFe + YMg. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks and imply that successful tourmaline geothermometers may be developed by thermal calibration of the Mg– Fe order–disorder reaction, whereas any thermometers based on Mg–Al disorder will be insensitive and involve large uncertainties.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  • Callac, Nolwenn, et al. (författare)
  • Modes of carbon fixation in an arsenic and CO2-rich shallow hydrothermal ecosystem
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322.
  • Tidskriftsartikel (refereegranskat)abstract
    • The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO2-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of RuBisCO Form II with a highly prevalent Zetaproteobacteria 16S rRNA gene density infers that iron-oxidizing bacteria contribute significantly to the sediment CBB cycle gene content. Three clusters form from different microbial guilds, each one encompassing one gene involved in CO2 fixation, aside from sulfate reduction. Our study suggests that the microbially mediated CBB cycle drives carbon fixation in the Spathi Bay sediments that are characterized by diffuse hydrothermal activity, high CO2, As emissions and chemically reduced fluids. This study highlights the breadth of conditions influencing the biogeochemistry in shallow CO2-rich hydrothermal systems and the importance of coupling highly specific process indicators to elucidate the complexity of carbon cycling in these ecosystems.
  •  
43.
  • Cámara, Fernando, 1967-, et al. (författare)
  • Old samples - new amphiboles
  • 2022
  • Ingår i: Abstracts, International Mineralogical Association 23<sup>rd</sup> General meeting. - Lyon. ; , s. 42-42
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The scientific value of old and well-preserved collections is priceless. Samples that already have been studied and described can still give very useful information. For instance, minerals with complex solid solutions like amphiboles sometimes show new compositions that are feasible because of crystal-chemistry and charge arrangements, based on the current classification scheme by Hawthorne et al. (2012) for the amphibole supergroup. In the last four years, a fruitful collaboration between the Swedish Museum of Natural History and the Department of Earth Sciences of the University of Milan has allowed the identification of new amphibole species, recognized by CNMNC-IMA. First of all, we identified hjalmarite, [ANaB(NaMn)CMg5TSi8O22W(OH)2], which is related to richterite via the homovalent substitution [B]Ca2+ → [B]Mn2+, and is the second recognized member of the sodium–(magnesium–iron–manganese) subgroup, after ferri-ghoseite. Sjögren (1891) had described a physically similar, MnO-rich sample from Långban, named “astochit”. A related amphibole, although belonging to a different subgroup, that we have formally described is potassic-richterite, [AKB(NaCa)CMg5TSi8O22W(OH)2]. It was found in a sample from the Pajsberg iron and manganese ore mines, which was originally collected by the mineralogist Lars Johan Igelström, probably in the 1850s. The most recent amphibole we have described is ferri-taramite [ANaB(NaCa)C(Mg3Fe3+2)T(Si6Al2)O22W(OH)2], found in a skarn sample from the Jakobsberg manganese mine: it was once examined by Flink (1914), who noted the unusual character of the amphibole and described it as a “strange hornblende”.
  •  
44.
  • Cámara, Fernando, et al. (författare)
  • Schorl-1A from Langesundsfjord (Norway)
  • 2022
  • Ingår i: Journal of Geosciences. - : Czech Geological Society. - 1802-6222 .- 1803-1943. ; 67:2, s. 129-139
  • Tidskriftsartikel (refereegranskat)
  •  
45.
  •  
46.
  •  
47.
  • de la Rosa, Nathaly, et al. (författare)
  • Quantification of lithium at ppm level in geological samples using nuclear reaction analysis
  • 2018
  • Ingår i: Journal of Radioanalytical and Nuclear Chemistry. - : Springer Science and Business Media LLC. - 0236-5731 .- 1588-2780. ; 317:1, s. 253-259
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton-induced reaction (p,α) is one type of nuclear reaction analysis (NRA) suitable especially for light element quantification. In the case of lithium quantification presented in this work, accelerated protons with an energy about of 850 keV were used to induce the 7Li(p,α)4He reaction in standard reference and geological samples such as tourmaline and other Li-minerals. It is shown that this technique for lithium quantification allowed for measurement of concentrations down below one ppm. The possibility to relate the lithium content with the boron content in a single analysis was also demonstrated using tourmaline samples, both in absolute concentration and in lateral distribution. In addition, Particle induced X-ray emission (PIXE) was utilized as a complementary IBA technique for simultaneous mapping of elements heavier than sodium.
  •  
48.
  •  
49.
  • D'Ippolito, Veronica, et al. (författare)
  • Color mechanisms in spinel: cobalt and iron interplay for the blue color
  • 2015
  • Ingår i: Physics and chemistry of minerals. - : Springer Science and Business Media LLC. - 0342-1791 .- 1432-2021. ; 42:6, s. 431-439
  • Tidskriftsartikel (refereegranskat)abstract
    • Six natural, blue colored spinel crystals were studied chemically by electron microprobe and laser ablation inductively coupled plasma mass spectrometry (LAICP-MS) techniques and optically by UV–VIS–NIR–MIR spectroscopy in the range 30,000–2,000 cm−1  to investigate the causes of their blue color hues. The positions of the absorption bands vary only marginally with the principal composition of the samples (gahnite vs. spinel s.s .). Although blue colors in spinels are frequently the result of various electronic processes in Fe cations, we demonstrate by comparison with synthetic Co-bearing samplesthat Co acts as an important chromophore also in natural spinels. Already at concentration levels of a few ppm (e.g.,>10 ppm), cobalt gives rise to absorption bands at ~18,000, 17,000 and 16,000 cm−1  that result in distinct blue coloration. In spinels with insignificant Co contents, different shades of paler blue (from purplish to greenish blue) colors are caused by electronic transitions in TFe2+, MFe2+, MFe3+ and Fe2+–Fe3+  cation pairs.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 120
Typ av publikation
tidskriftsartikel (109)
annan publikation (3)
konferensbidrag (3)
doktorsavhandling (3)
forskningsöversikt (1)
licentiatavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (109)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Skogby, Henrik (77)
Bosi, Ferdinando (42)
Hålenius, Ulf (41)
Skogby, Henrik, 1956 ... (34)
Lazor, Peter (13)
Kristiansson, Per (11)
visa fler...
Ros, Linus (8)
Andreozzi, Giovanni ... (6)
Lenaz, Davide (6)
Liu, Lei (5)
Mathieu, Roland (5)
Altieri, Alessandra (5)
Pezzotta, Federico (5)
Andreozzi, Giovanni (5)
Karlsson, Andreas (5)
Ballirano, Paolo (5)
Mauro, Daniela (5)
Pallon, Jan (4)
Celata, Beatrice (4)
Ivarsson, Magnus, 19 ... (4)
Pasero, Marco (4)
Biagioni, Cristian (4)
Tempesta, Gioacchino (3)
Marone, Federica (3)
D'Ippolito, Veronica (3)
Campopiano, Antonell ... (3)
Olori, Angelo (3)
Belivanova, Veneta (3)
Zaccarini, Federica (3)
Johnsson, Mats (2)
Elfman, Mikael (2)
Nilsson, Charlotta (2)
Li, Xiaodong (2)
Brüchert, Volker (2)
Kremer, Reinhard K. (2)
Sjöberg, Susanne, 19 ... (2)
Troll, Valentin R. (2)
Skelton, Alasdair (2)
Stockmann, Gabrielle (2)
Broman, Curt (2)
Balic-Zunic, Tonci (2)
Whitehouse, Martin J ... (2)
Gianchiglia, Flamini ... (2)
Cannizzaro, Annapaol ... (2)
Pacella, Alessandro (2)
Deegan, Frances M. (2)
Bengtson, Stefan (2)
Ivarsson, Magnus (2)
Sallstedt, Therese (2)
Bonaccorsi, Elena (2)
visa färre...
Lärosäte
Naturhistoriska riksmuseet (92)
Uppsala universitet (20)
Stockholms universitet (18)
Lunds universitet (8)
Göteborgs universitet (1)
Örebro universitet (1)
visa fler...
Linnéuniversitetet (1)
RISE (1)
visa färre...
Språk
Engelska (120)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (115)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy