SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skovbakke Sarah Line) "

Sökning: WFRF:(Skovbakke Sarah Line)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Forsman, Huamei, et al. (författare)
  • Structural changes of the ligand and of the receptor alters the receptor preference for neutrophil activating peptides starting with a formylmethionyl group.
  • 2015
  • Ingår i: Biochimica et biophysica acta. - : Elsevier BV. - 0006-3002. ; 1853:1, s. 192-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogenic Staphylococcus aureus strains produce N-formylmethionyl containing peptides, of which the tetrapeptide fMIFL is a potent activator of the neutrophil formyl peptide receptor 1 (FPR1) and the PSMα2 peptide is a potent activator of the closely related FPR2. Variants derived from these two peptide activators were used to disclose the structural determinants for receptor interaction. Removal of five amino acids from the C-terminus of PSMα2 gave rise to a peptide that had lost the receptor-independent neutrophil permeabilizing effect, whereas neutrophil activation capacity as well as its preference for FPR2 was retained. Shorter peptides, PSMα21-10 and PSMα21-5, activate neutrophils, but the receptor preference for these peptides was switched to FPR1. The fMIFL-PSM5-16 peptide, in which the N-terminus of PSMα21-16 was replaced by the sequence fMIFL, was a dual agonist for FPR1/FPR2, whereas fMIFL-PSM5-10 preferred FPR1 to FPR2. Further, an Ile residue was identified as a key determinant for interaction with FPR2. A chimeric receptor in which the cytoplasmic tail of FPR1 was replaced by the corresponding part of FPR2 lost the ability to recognize FPR1 agonists, but gained function in relation to FPR2 agonists. Taken together, our data demonstrate that the C-terminus of the PSMα2 peptide plays a critical role for its cytotoxicity, but is not essential for the receptor-mediated pro-inflammatory activity. More importantly, we show that the amino acids present in the C-terminus, which are not supposed to occupy the agonist-binding pocket in the FPRs, are of importance for the choice of receptor.
  •  
2.
  • Gabl, Michael, et al. (författare)
  • A Pepducin Derived from the Third Intracellular Loop of FPR2 Is a Partial Agonist for Direct Activation of This Receptor in Neutrophils But a Full Agonist for Cross-Talk Triggered Reactivation of FPR2
  • 2014
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently described a novel receptor cross-talk mechanism in neutrophils, unique in that the signals generated by the PAF receptor (PAFR) and the ATP receptor (P2Y(2)R) transfer formyl peptide receptor 1 (FPR1) from a desensitized (non-signaling) state back to an actively signaling state (Forsman H et al., PLoS One, 8:e60169, 2013; Onnheim K, et al., Exp Cell Res, 323:209, 2014). In addition to the G-protein coupled FPR1, neutrophils also express the closely related receptor FPR2. In this study we used an FPR2 specific pepducin, proposed to work as an allosteric modulator at the cytosolic signaling interface, to determine whether the cross-talk pathway is utilized also by FPR2. The pepducin used contains a fatty acid linked to a peptide sequence derived from the third intracellular loop of FPR2, and it activates as well as desensensitizes this receptor. We now show that neutrophils desensitized with the FPR2-specific pepducin display increased cellular responses to stimulation with PAF or ATP. The secondary PAF/ATP induced response was sensitive to FPR2-specific inhibitors, disclosing a receptor cross-talk mechanism underlying FPR2 reactivation. The pepducin induced an activity in naive cells similar to that of a conventional FPR2 agonist, but with lower potency (partial efficacy), meaning that the pepducin is a partial agonist. The PAF- or ATP-induced reactivation was, however, much more pronounced when neutrophils had been desensitized to the pepducin as compared to cells desensitized to conventional agonists. The pepducin should thus in this respect be classified as a full agonist. In summary, we demonstrate that desensitized FPR2 can be transferred back to an actively signaling state by receptor cross-talk signals generated through PAFR and P2Y(2)R, and the difference in agonist potency with respect to pepducin-induced direct receptor activation and cross-talk reactivation of FPR2 puts the concept of functional selectivity in focus.
  •  
3.
  • Holdfeldt, André, et al. (författare)
  • The lipidated peptidomimetic Lau-[(S)-Aoc]-(Lys-βNphe)6-NH2 is a novel formyl peptide receptor 2 agonist that activates both human and mouse neutrophil NADPH-oxidase.
  • 2016
  • Ingår i: The Journal of biological chemistry. - 1083-351X. ; 291, s. 19888-19899
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophils expressing formyl peptide receptor 2 (FPR2) play key roles in host defense, immune regulation, and in resolution of inflammation. Consequently, the search for FPR2-specific modulators has attracted much attention due to its therapeutic potential. Earlier described agonists for this receptor display potent activity for the human receptor (FPR2) but low activity for the mouse receptor orthologue (Fpr2), rendering them inapplicable in murine models of human disease. Here we describe a novel FPR2 agonist, the proteolytically stable α-peptide/β-peptoid hybrid Lau-[(S)-Aoc]-(Lys-βNphe)6-NH2 (F2M2), showing comparable potency in activating human and mouse neutrophils by inducing a rise in intracellular calcium and assembly of the superoxide-generating NADPH-oxidase. The FPR2/Fpr2 agonist contains a headgroup of 2-aminooctanoic acid (Aoc) residue acylated with lauric acid (C12 fatty acid), which is linked to a peptide/peptoid repeat (Lys-βNphe)6-NH2). Both the fatty acid moiety and the (S)-Aoc residue were required for FPR2/Fpr2 activation. This type of proteolytically stable FPR2-specific peptidomimetics may serve as valuable tools for future analysis of FPR2 signaling as well as for development of prophylactic immunomodulatory therapy. This novel class of cross-species FPR2/Fpr2 agonists should enable translation of results obtained with mouse neutrophils (and disease models) into enhanced understanding of human inflammatory and immune diseases.
  •  
4.
  • Skovbakke, Sarah Line, et al. (författare)
  • Combining Elements from Two Antagonists of Formyl Peptide Receptor 2 Generates More Potent Peptidomimetic Antagonists.
  • 2017
  • Ingår i: Journal of medicinal chemistry. - : American Chemical Society (ACS). - 1520-4804 .- 0022-2623. ; 60:16, s. 6991-6997
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural optimization of a peptidomimetic antagonist of formyl peptide receptor 2 (FPR2) was explored by an approach involving combination of elements from the two most potent FPR2 antagonists described: a Rhodamine B-conjugated 10-residue gelsonin-derived peptide (i.e., PBP10, RhB-QRLFQVKGRR-OH) and the palmitoylated α-peptide/β-peptoid hybrid Pam-(Lys-βNspe)6-NH2. This generated an array of hybrid compounds from which a new subclass of receptor-selective antagonists was identified. The most potent representatives displayed activity in the low nanomolar range. The resulting stable and potent FPR2-selective antagonists (i.e., RhB-(Lys-βNphe)n-NH2; n = 4-6) are expected to become valuable tools in further elucidation of the physiological role of FPR2 in health and disease.
  •  
5.
  • Skovbakke, Sarah Line, et al. (författare)
  • The peptidomimetic Lau-(Lys-βNSpe)6-NH2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils.
  • 2016
  • Ingår i: Biochemical pharmacology. - : Elsevier BV. - 1873-2968 .- 0006-2952. ; 119, s. 56-65
  • Tidskriftsartikel (refereegranskat)abstract
    • The formyl peptide receptor (FPR) gene family has a complex evolutionary history and comprises eight murine members but only three human representatives. To enable translation of results obtained in mouse models of human diseases, more comprehensive knowledge of the pharmacological similarities/differences between the human and murine FPR family members is required. Compared to FPR1 and FPR2 expressed by human neutrophils, very little is known about agonist/antagonist recognition patterns for their murine orthologues, but now we have identified two potent and selective formylated peptide agonists (fMIFL and PSMα2) for Fpr1 and Fpr2, respectively. These peptides were used to determine the inhibition profile of a set of antagonists with known specificities for the two FPRs in relation to the corresponding murine receptors. Some of the most potent and selective antagonists for the human receptors proved to be devoid of effect on their murine orthologues as determined by their inability to inhibit superoxide release from murine neutrophils upon stimulation with receptor-specific agonists. The Boc-FLFLF peptide was found to be a selective antagonist for Fpr1, whereas the lipidated peptidomimetic Lau-(Lys-βNSpe)6-NH2 and the hexapeptide WRW4 were identified as Fpr2-selective antagonists.
  •  
6.
  • Skovbakke, Sarah Line, et al. (författare)
  • The proteolytically stable peptidomimetic Pam-(Lys-βNSpe)6-NH2 selectively inhibits human neutrophil activation via formyl peptide receptor 2.
  • 2015
  • Ingår i: Biochemical pharmacology. - : Elsevier BV. - 1873-2968 .- 0006-2952. ; 93:2, s. 182-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunomodulatory host defense peptides (HDPs) are considered to be lead compounds for novel anti-sepsis and anti-inflammatory agents. However, development of drugs based on HDPs has been hampered by problems with toxicity and low bioavailability due to in vivo proteolysis. Here, a subclass of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogs of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging flow cytometry in primary neutrophils and FPR-transfected cell lines, we found that a fluorescently labeled analog of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore, the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating peptide agonist Cy5-WKYMWM, while the binding of an FPR1-selective agonist was not inhibited. To our knowledge, Pam-(Lys-βNSpe)6-NH2 is the first HDP mimic found to inhibit activation of human neutrophils via direct interaction with FPR2. Hence, we consider Pam-(Lys-βNSpe)6-NH2 to be a convenient tool in the further dissection of the role of FPR2 in inflammation and homeostasis as well as for investigation of the importance of neutrophil stimulation in anti-infective therapy involving HDPs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy