SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smedby Örjan 1956 ) "

Sökning: WFRF:(Smedby Örjan 1956 )

  • Resultat 1-50 av 160
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ahle, Margareta, 1966- (författare)
  • Necrotising Enterocolitis : epidemiology and imaging
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Necrotising enterocolitis (NEC) is a potentially devastating intestinal inflammation of multifactorial aetiology in premature or otherwise vulnerable neonates. Because of the broad spectrum of presentations, diagnosis and timing of surgical intervention may be challenging, and imaging needs to be an integrated part of management.The first four studies included in this thesis used routinely collected, nationwide register data to describe the incidence of NEC in Sweden 1987‒2009, its variation with time, seasonality, space-time clustering, and associations with maternal, gestational, and perinatal factors, and the risk of intestinal failure in the aftermath of the disease.Early infant survival increased dramatically during the study period. The incidence rate of NEC was 0.34 per 1,000 live births, rising from 0.26 per 1,000 live births in the first six years of the study period to 0.57 in the last five. The incidence rates in the lowest birth weights were 100‒160 times those of the entire birth cohort. Seasonal variation was found, as well as space-time clustering in association with delivery hospitals but not with maternal residential municipalities.Comparing NEC cases with matched controls, some factors, positively associated with NEC, were isoimmunisation, fetal distress, caesarean section, persistent ductus arteriosus, cardiac and gastrointestinal malformations, and chromosomal abnormalities. Negative associations included maternal pre-eclampsia, maternal urinary infection, and premature rupture of the membranes. Intestinal failure occurred in 6% of NEC cases and 0.4% of controls, with the highest incidence towards the end of the study period.The last study investigated current practices and perceptions of imaging in the management of NEC, as reported by involved specialists. There was great consensus on most issues. Areas in need of further study seem mainly related to imaging routines, the use of ultrasound, and indications for surgery.Developing alongside the progress of neonatal care, NEC is a complex, multifactorial disease, with shifting patterns of predisposing and precipitating causes, and potentially serious long-term complications. The findings of seasonal variation, spacetime clustering, and negative associations with antenatal exposure to infectious agents, fit into the growing understanding of the central role of bacteria and immunological processes in normal maturation of the intestinal canal as well as in the pathogenesis of NEC. Imaging in the management of NEC may be developed through future studies combining multiple diagnostic parameters in relation to clinical outcome.
  •  
3.
  •  
4.
  • Andersson, Thord, et al. (författare)
  • Consistent intensity inhomogeneity correction in water-fat MRI
  • 2015
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley-Blackwell. - 1053-1807 .- 1522-2586. ; 42:2
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To quantitatively and qualitatively evaluate the water-signal performance of the consistent intensity inhomogeneity correction (CIIC) method to correct for intensity inhomogeneitiesMETHODS: Water-fat volumes were acquired using 1.5 Tesla (T) and 3.0T symmetrically sampled 2-point Dixon three-dimensional MRI. Two datasets: (i) 10 muscle tissue regions of interest (ROIs) from 10 subjects acquired with both 1.5T and 3.0T whole-body MRI. (ii) Seven liver tissue ROIs from 36 patients imaged using 1.5T MRI at six time points after Gd-EOB-DTPA injection. The performance of CIIC was evaluated quantitatively by analyzing its impact on the dispersion and bias of the water image ROI intensities, and qualitatively using side-by-side image comparisons.RESULTS: CIIC significantly ( P1.5T≤2.3×10-4,P3.0T≤1.0×10-6) decreased the nonphysiological intensity variance while preserving the average intensity levels. The side-by-side comparisons showed improved intensity consistency ( Pint⁡≤10-6) while not introducing artifacts ( Part=0.024) nor changed appearances ( Papp≤10-6).CONCLUSION: CIIC improves the spatiotemporal intensity consistency in regions of a homogenous tissue type.
  •  
5.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images
  • 2021
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Both radiomics and deep learning methods have shown great promise in predicting lesion malignancy in various image-based oncology studies. However, it is still unclear which method to choose for a specific clinical problem given the access to the same amount of training data. In this study, we try to compare the performance of a series of carefully selected conventional radiomics methods, end-to-end deep learning models, and deep-feature based radiomics pipelines for pulmonary nodule malignancy prediction on an open database that consists of 1297 manually delineated lung nodules.Methods: Conventional radiomics analysis was conducted by extracting standard handcrafted features from target nodule images. Several end-to-end deep classifier networks, including VGG, ResNet, DenseNet, and EfficientNet were employed to identify lung nodule malignancy as well. In addition to the baseline implementations, we also investigated the importance of feature selection and class balancing, as well as separating the features learned in the nodule target region and the background/context region. By pooling the radiomics and deep features together in a hybrid feature set, we investigated the compatibility of these two sets with respect to malignancy prediction.Results: The best baseline conventional radiomics model, deep learning model, and deep-feature based radiomics model achieved AUROC values (mean ± standard deviations) of 0.792 ± 0.025, 0.801 ± 0.018, and 0.817 ± 0.032, respectively through 5-fold cross-validation analyses. However, after trying out several optimization techniques, such as feature selection and data balancing, as well as adding context features, the corresponding best radiomics, end-to-end deep learning, and deep-feature based models achieved AUROC values of 0.921 ± 0.010, 0.824 ± 0.021, and 0.936 ± 0.011, respectively. We achieved the best prediction accuracy from the hybrid feature set (AUROC: 0.938 ± 0.010).Conclusion: The end-to-end deep-learning model outperforms conventional radiomics out of the box without much fine-tuning. On the other hand, fine-tuning the models lead to significant improvements in the prediction performance where the conventional and deep-feature based radiomics models achieved comparable results. The hybrid radiomics method seems to be the most promising model for lung nodule malignancy prediction in this comparative study.
  •  
6.
  • Astaraki, Mehdi, PhD Student, 1984- (författare)
  • Advanced Machine Learning Methods for Oncological Image Analysis
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally-invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow.This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis.The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head-neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy.Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power.Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra-dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses.In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis.
  •  
7.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features
  • 2021
  • Ingår i: Physica medica (Testo stampato). - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 83, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Low-Dose Computed Tomography (LDCT) is the most common imaging modality for lung cancer diagnosis. The presence of nodules in the scans does not necessarily portend lung cancer, as there is an intricate relationship between nodule characteristics and lung cancer. Therefore, benign-malignant pulmonary nodule classification at early detection is a crucial step to improve diagnosis and prolong patient survival. The aim of this study is to propose a method for predicting nodule malignancy based on deep abstract features.Methods: To efficiently capture both intra-nodule heterogeneities and contextual information of the pulmonary nodules, a dual pathway model was developed to integrate the intra-nodule characteristics with contextual attributes. The proposed approach was implemented with both supervised and unsupervised learning schemes. A random forest model was added as a second component on top of the networks to generate the classification results. The discrimination power of the model was evaluated by calculating the Area Under the Receiver Operating Characteristic Curve (AUROC) metric. Results: Experiments on 1297 manually segmented nodules show that the integration of context and target supervised deep features have a great potential for accurate prediction, resulting in a discrimination power of 0.936 in terms of AUROC, which outperformed the classification performance of the Kaggle 2017 challenge winner.Conclusion: Empirical results demonstrate that integrating nodule target and context images into a unified network improves the discrimination power, outperforming the conventional single pathway convolutional neural networks.
  •  
8.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method
  • 2019
  • Ingår i: Physica medica (Testo stampato). - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 60, s. 58-65
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTo explore prognostic and predictive values of a novel quantitative feature set describing intra-tumor heterogeneity in patients with lung cancer treated with concurrent and sequential chemoradiotherapy.MethodsLongitudinal PET-CT images of 30 patients with non-small cell lung cancer were analysed. To describe tumor cell heterogeneity, the tumors were partitioned into one to ten concentric regions depending on their sizes, and, for each region, the change in average intensity between the two scans was calculated for PET and CT images separately to form the proposed feature set. To validate the prognostic value of the proposed method, radiomics analysis was performed and a combination of the proposed novel feature set and the classic radiomic features was evaluated. A feature selection algorithm was utilized to identify the optimal features, and a linear support vector machine was trained for the task of overall survival prediction in terms of area under the receiver operating characteristic curve (AUROC).ResultsThe proposed novel feature set was found to be prognostic and even outperformed the radiomics approach with a significant difference (AUROCSALoP = 0.90 vs. AUROCradiomic = 0.71) when feature selection was not employed, whereas with feature selection, a combination of the novel feature set and radiomics led to the highest prognostic values.ConclusionA novel feature set designed for capturing intra-tumor heterogeneity was introduced. Judging by their prognostic power, the proposed features have a promising potential for early survival prediction.
  •  
9.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Multimodal brain tumor segmentation with normal appearance autoencoder
  • 2019
  • Ingår i: International MICCAI Brainlesion Workshop. - Cham : Springer Nature. ; , s. 316-323
  • Konferensbidrag (refereegranskat)abstract
    • We propose a hybrid segmentation pipeline based on the autoencoders’ capability of anomaly detection. To this end, we, first, introduce a new augmentation technique to generate synthetic paired images. Gaining advantage from the paired images, we propose a Normal Appearance Autoencoder (NAA) that is able to remove tumors and thus reconstruct realistic-looking, tumor-free images. After estimating the regions where the abnormalities potentially exist, a segmentation network is guided toward the candidate region. We tested the proposed pipeline on the BraTS 2019 database. The preliminary results indicate that the proposed model improved the segmentation accuracy of brain tumor subregions compared to the U-Net model. 
  •  
10.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Normal appearance autoencoder for lung cancer detection and segmentation
  • 2019
  • Ingår i: International Conference on Medical Image Computing and Computer-Assisted Intervention. - Cham : Springer Nature. ; , s. 249-256
  • Konferensbidrag (refereegranskat)abstract
    • One of the major differences between medical doctor training and machine learning is that doctors are trained to recognize normal/healthy anatomy first. Knowing the healthy appearance of anatomy structures helps doctors to make better judgement when some abnormality shows up in an image. In this study, we propose a normal appearance autoencoder (NAA), that removes abnormalities from a diseased image. This autoencoder is semi-automatically trained using another partial convolutional in-paint network that is trained using healthy subjects only. The output of the autoencoder is then fed to a segmentation net in addition to the original input image, i.e. the latter gets both the diseased image and a simulated healthy image where the lesion is artificially removed. By getting access to knowledge of how the abnormal region is supposed to look, we hypothesized that the segmentation network could perform better than just being shown the original slice. We tested the proposed network on the LIDC-IDRI dataset for lung cancer detection and segmentation. The preliminary results show the NAA approach improved segmentation accuracy substantially in comparison with the conventional U-Net architecture. 
  •  
11.
  •  
12.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Prior-aware autoencoders for lung pathology segmentation
  • 2022
  • Ingår i: Medical Image Analysis. - : Elsevier BV. - 1361-8415 .- 1361-8423. ; 80, s. 102491-
  • Tidskriftsartikel (refereegranskat)abstract
    • Segmentation of lung pathology in Computed Tomography (CT) images is of great importance for lung disease screening. However, the presence of different types of lung pathologies with a wide range of heterogeneities in size, shape, location, and texture, on one side, and their visual similarity with respect to surrounding tissues, on the other side, make it challenging to perform reliable automatic lesion seg-mentation. To leverage segmentation performance, we propose a deep learning framework comprising a Normal Appearance Autoencoder (NAA) model to learn the distribution of healthy lung regions and re-construct pathology-free images from the corresponding pathological inputs by replacing the pathological regions with the characteristics of healthy tissues. Detected regions that represent prior information re-garding the shape and location of pathologies are then integrated into a segmentation network to guide the attention of the model into more meaningful delineations. The proposed pipeline was tested on three types of lung pathologies, including pulmonary nodules, Non-Small Cell Lung Cancer (NSCLC), and Covid-19 lesion on five comprehensive datasets. The results show the superiority of the proposed prior model, which outperformed the baseline segmentation models in all the cases with significant margins. On av-erage, adding the prior model improved the Dice coefficient for the segmentation of lung nodules by 0.038, NSCLCs by 0.101, and Covid-19 lesions by 0.041. We conclude that the proposed NAA model pro-duces reliable prior knowledge regarding the lung pathologies, and integrating such knowledge into a prior segmentation network leads to more accurate delineations.
  •  
13.
  •  
14.
  •  
15.
  • Bendazzoli, Simone, et al. (författare)
  • Automatic rat brain segmentation from MRI using statistical shape models and random forest
  • 2019
  • Ingår i: MEDICAL IMAGING 2019. - : SPIE-INT SOC OPTICAL ENGINEERING. - 9781510625464 - 9781510625457
  • Konferensbidrag (refereegranskat)abstract
    • In MRI neuroimaging, the shimming procedure is used before image acquisition to correct for inhomogeneity of the static magnetic field within the brain. To correctly adjust the field, the brain's location and edges must first be identified from quickly-acquired low resolution data. This process is currently carried out manually by an operator, which can be time-consuming and not always accurate. In this work, we implement a quick and automatic technique for brain segmentation to be potentially used during the shimming. Our method is based on two main steps. First, a random forest classifier is used to get a preliminary segmentation from an input MRI image. Subsequently, a statistical shape model of the brain, which was previously generated from ground-truth segmentations, is fitted to the output of the classifier to obtain a model-based segmentation mask. In this way, a-priori knowledge on the brain's shape is included in the segmentation pipeline. The proposed methodology was tested on low resolution images of rat brains and further validated on rabbit brain images of higher resolution. Our results suggest that the present method is promising for the desired purpose in terms of time efficiency, segmentation accuracy and repeatability. Moreover, the use of shape modeling was shown to be particularly useful when handling low-resolution data, which could lead to erroneous classifications when using only machine learning-based methods.
  •  
16.
  •  
17.
  • Bernard, Olivier, et al. (författare)
  • Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography.
  • 2016
  • Ingår i: IEEE Transactions on Medical Imaging. - : Institute of Electrical and Electronics Engineers (IEEE). - 0278-0062 .- 1558-254X. ; 35:4, s. 967-977
  • Tidskriftsartikel (refereegranskat)abstract
    • Real-time 3D Echocardiography (RT3DE) has been proven to be an accurate tool for left ventricular (LV) volume assessment. However, identification of the LV endocardium remains a challenging task, mainly because of the low tissue/blood contrast of the images combined with typical artifacts. Several semi and fully automatic algorithms have been proposed for segmenting the endocardium in RT3DE data in order to extract relevant clinical indices, but a systematic and fair comparison between such methods has so far been impossible due to the lack of a publicly available common database. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms developed to segment the LV border in RT3DE. A database consisting of 45 multivendor cardiac ultrasound recordings acquired at different centers with corresponding reference measurements from 3 experts are made available. The algorithms from nine research groups were quantitatively evaluated and compared using the proposed online platform. The results showed that the best methods produce promising results with respect to the experts' measurements for the extraction of clinical indices, and that they offer good segmentation precision in terms of mean distance error in the context of the experts' variability range. The platform remains open for new submissions.
  •  
18.
  • Blystad, Ida, 1972- (författare)
  • Clinical Applications of Synthetic MRI of the Brain
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic Resonance Imaging (MRI) has a high soft-tissue contrast with a high sensitivity for detecting pathological changes in the brain. Conventional MRI is a time-consuming method with multiple scans that relies on the visual assessment of the neuroradiologist. Synthetic MRI uses one scan to produce conventional images, but also quantitative maps based on relaxometry, that can be used to quantitatively analyse tissue properties and pathological changes. The studies presented here apply the use of synthetic MRI of the brain in different clinical settings.In the first study, synthetic MR images were compared to conventional MR images in 22 patients. The contrast, the contrast-to-noise ratio, and the diagnostic quality were assessed. Image quality was perceived to be inferior in the synthetic images, but synthetic images agreed with the clinical diagnoses to the same extent as the conventional images.Patients with early multiple sclerosis were analysed in the second study. In patients with multiple sclerosis, contrast-enhancing white matter lesions are a sign of active disease and can indicate a need for a change in therapy. Gadolinium-based contrast agents are used to detect active lesions, but concern has been raised regarding the long-term effects of repeated use of gadolinium. In this study, relaxometry was used to evaluate whether pre-contrast injection tissue-relaxation rates and proton density can identify active lesions without gadolinium. The findings suggest that active lesions often have relaxation times and proton density that differ from non-enhancing lesions, but with some overlap. This makes it difficult to replace gadolinium-based contrast agent injection with synthetic MRI in the monitoring of MS patients.Malignant gliomas are primary brain tumours with contrast enhancement due to a defective blood-brain barrier. However, they also grow in an infiltrative, diffuse manner, making it difficult to clearly delineate them from surrounding normal brain tissue in the diagnostic workup, at surgery, and during follow-up. The contrast-enhancing part of the tumour is easily visualised, but not the diffuse infiltration. In studies three and four, synthetic MRI was used to analyse the peritumoral area of malignant gliomas, and revealed quantitative findings regarding peritumoral relaxation changes and non-visible contrast enhancement suggestive of non-visible infiltrative tumour growth.In conclusion, synthetic MRI provides quantitative information about the brain tissue and this could improve the diagnosis and treatment for patients.
  •  
19.
  • Blystad, Ida, et al. (författare)
  • Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent
  • 2016
  • Ingår i: American Journal of Neuroradiology. - : American Society of Neuroradiology (ASNR). - 0195-6108 .- 1936-959X. ; 37:1, s. 94-100
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Contrast-enhancing MS lesions are important markers of active inflammation in the diagnostic work-up of MS and in disease monitoring with MR imaging. Because intravenous contrast agents involve an expense and a potential risk of adverse events, it would be desirable to identify active lesions without using a contrast agent. The purpose of this study was to evaluate whether pre-contrast injection tissue-relaxation rates and proton density of MS lesions, by using a new quantitative MR imaging sequence, can identify active lesions.MATERIALS AND METHODS: Forty-four patients with a clinical suspicion of MS were studied. MR imaging with a standard clinical MS protocol and a quantitative MR imaging sequence was performed at inclusion (baseline) and after 1 year. ROIs were placed in MS lesions, classified as nonenhancing or enhancing. Longitudinal and transverse relaxation rates, as well as proton density were obtained from the quantitative MR imaging sequence. Statistical analyses of ROI values were performed by using a mixed linear model, logistic regression, and receiver operating characteristic analysis.RESULTS: Enhancing lesions had a significantly (P < .001) higher mean longitudinal relaxation rate (1.22 ± 0.36 versus 0.89 ± 0.24), a higher mean transverse relaxation rate (9.8 ± 2.6 versus 7.4 ± 1.9), and a lower mean proton density (77 ± 11.2 versus 90 ± 8.4) than nonenhancing lesions. An area under the receiver operating characteristic curve value of 0.832 was obtained.CONCLUSIONS: Contrast-enhancing MS lesions often have proton density and relaxation times that differ from those in nonenhancing lesions, with lower proton density and shorter relaxation times in enhancing lesions compared with nonenhancing lesions.
  •  
20.
  • Blystad, Ida, 1972-, et al. (författare)
  • Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant gliomas are primary brain tumours with an infiltrative growth pattern, often with contrast enhancement on magnetic resonance imaging (MRI). However, it is well known that tumour infiltration extends beyond the visible contrast enhancement. The aim of this study was to investigate if there is contrast enhancement not detected visually in the peritumoral oedema of malignant gliomas by using relaxometry with synthetic MRI. 25 patients who had brain tumours with a radiological appearance of malignant glioma were prospectively included. A quantitative MR-sequence measuring longitudinal relaxation (R-1), transverse relaxation (R-2) and proton density (PD), was added to the standard MRI protocol before surgery. Five patients were excluded, and in 20 patients, synthetic MR images were created from the quantitative scans. Manual regions of interest (ROIs) outlined the visibly contrast-enhancing border of the tumours and the peritumoral area. Contrast enhancement was quantified by subtraction of native images from post GD-images, creating an R-1-difference-map. The quantitative R-1-difference-maps showed significant contrast enhancement in the peritumoral area (0.047) compared to normal appearing white matter (0.032), p = 0.048. Relaxometry detects contrast enhancement in the peritumoral area of malignant gliomas. This could represent infiltrative tumour growth.
  •  
21.
  •  
22.
  • Brusini, Irene, et al. (författare)
  • Changes in brain architecture are consistent with altered fear processing in domestic rabbits
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:28, s. 7380-7385
  • Tidskriftsartikel (refereegranskat)abstract
    • The most characteristic feature of domestic animals is their change in behavior associated with selection for tameness. Here we show, using high-resolution brain magnetic resonance imaging in wild and domestic rabbits, that domestication reduced amygdala volume and enlarged medial prefrontal cortex volume, supporting that areas driving fear have lost volume while areas modulating negative affect have gained volume during domestication. In contrast to the localized gray matter alterations, white matter anisotropy was reduced in the corona radiata, corpus callosum, and the subcortical white matter. This suggests a compromised white matter structural integrity in projection and association fibers affecting both afferent and efferent neural flow, consistent with reduced neural processing. We propose that compared with their wild ancestors, domestic rabbits are less fearful and have an attenuated flight response because of these changes in brain architecture.
  •  
23.
  •  
24.
  •  
25.
  • Brusini, Irene (författare)
  • Methods for the analysis and characterization of brain morphology from MRI images
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Brain magnetic resonance imaging (MRI) is an imaging modality that produces detailed images of the brain without using any ionizing radiation. From a structural MRI scan, it is possible to extract morphological properties of different brain regions, such as their volume and shape. These measures can both allow a better understanding of how the brain changes due to multiple factors (e.g., environmental and pathological) and contribute to the identification of new imaging biomarkers of neurological and psychiatric diseases. The overall goal of the present thesis is to advance the knowledge on how brain MRI image processing can be effectively used to analyze and characterize brain structure.The first two works presented in this thesis are animal studies that primarily aim to use MRI data for analyzing differences between groups of interest. In Paper I, MRI scans from wild and domestic rabbits were processed to identify structural brain differences between these two groups. Domestication was found to significantly reshape brain structure in terms of both regional gray matter volume and white matter integrity. In Paper II, rat brain MRI scans were used to train a brain age prediction model. This model was then tested on both controls and a group of rats that underwent long-term environmental enrichment and dietary restriction. This healthy lifestyle intervention was shown to significantly affect the predicted brain age trajectories by slowing the rats' aging process compared to controls. Furthermore, brain age predicted on young adult rats was found to have a significant effect on survival.Papers III to V are human studies that propose deep learning-based methods for segmenting brain structures that can be severely affected by neurodegeneration. In particular, Papers III and IV focus on U-Net-based 2D segmentation of the corpus callosum (CC) in multiple sclerosis (MS) patients. In both studies, good segmentation accuracy was obtained and a significant correlation was found between CC area and the patient's level of cognitive and physical disability. Additionally, in Paper IV, shape analysis of the segmented CC revealed a significant association between disability and both CC thickness and bending angle. Conversely, in Paper V, a novel method for automatic segmentation of the hippocampus is proposed, which consists of embedding a statistical shape prior as context information into a U-Net-based framework. The inclusion of shape information was shown to significantly improve segmentation accuracy when testing the method on a new unseen cohort (i.e., different from the one used for training). Furthermore, good performance was observed across three different diagnostic groups (healthy controls, subjects with mild cognitive impairment and Alzheimer's patients) that were characterized by different levels of hippocampal atrophy.In summary, the studies presented in this thesis support the great value of MRI image analysis for the advancement of neuroscientific knowledge, and their contribution is mostly two-fold. First, by applying well-established processing methods on datasets that had not yet been explored in the literature, it was possible to characterize specific brain changes and disentangle relevant problems of a clinical or biological nature. Second, a technical contribution is provided by modifying and extending already-existing brain image processing methods to achieve good performance on new datasets.
  •  
26.
  • Brusini, Irene, et al. (författare)
  • MRI-derived brain age as a biomarker of ageing in rats : validation using a healthy lifestyle intervention
  • 2022
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 109, s. 204-215
  • Tidskriftsartikel (refereegranskat)abstract
    • The difference between brain age predicted from MRI and chronological age (the so-called BrainAGE) has been proposed as an ageing biomarker. We analyse its cross-species potential by testing it on rats undergoing an ageing modulation intervention. Our rat brain age prediction model combined Gaussian process regression with a classifier and achieved a mean absolute error (MAE) of 4.87 weeks using cross-validation on a longitudinal dataset of 31 normal ageing rats. It was then tested on two groups of 24 rats (MAE = 9.89 weeks, correlation coefficient = 0.86): controls vs. a group under long-term environmental enrichment and dietary restriction (EEDR). Using a linear mixed-effects model, BrainAGE was found to increase more slowly with chronological age in EEDR rats ( p = 0 . 015 for the interaction term). Cox re-gression showed that older BrainAGE at 5 months was associated with higher mortality risk ( p = 0 . 03 ). Our findings suggest that lifestyle-related prevention approaches may help to slow down brain ageing in rodents and the potential of BrainAGE as a predictor of age-related health outcomes.
  •  
27.
  • Brusini, Irene, et al. (författare)
  • Voxel-Wise Clustering of Tractography Data for Building Atlases of Local Fiber Geometry
  • 2019
  • Konferensbidrag (refereegranskat)abstract
    • This paper aims at proposing a method to generate atlases of white matter fibers’ geometry that consider local orientation and curvature of fibers extracted from tractography data. Tractography was performed on diffusion magnetic resonance images from a set of healthy subjects and each tract was characterized voxel-wise by its curvature and Frenet–Serret frame, based on which similar tracts could be clustered separately for each voxel and each subject. Finally, the centroids of the clusters identified in all subjects were clustered to create the final atlas. The proposed clustering technique showed promising results in identifying voxel-wise distributions of curvature and orientation. Two tractography algorithms (one deterministic and one probabilistic) were tested for the present work, obtaining two different atlases. A high agreement between the two atlases was found in several brain regions. This suggests that more advanced tractography methods might only be required for some specific regions in the brain. In addition, the probabilistic approach resulted in the identification of a higher number of fiber orientations in various white matter areas, suggesting it to be more adequate for investigating complex fiber configurations in the proposed framework as compared to deterministic tractography.
  •  
28.
  • Buizza, Giulia, et al. (författare)
  • Early tumor response prediction for lung cancer patients using novel longitudinal pattern features from sequential PET/CT image scans
  • 2018
  • Ingår i: Physica medica (Testo stampato). - : ELSEVIER SCI LTD. - 1120-1797 .- 1724-191X. ; 54, s. 21-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: A new set of quantitative features that capture intensity changes in PET/CT images over time and space is proposed for assessing the tumor response early during chemoradiotherapy. The hypothesis whether the new features, combined with machine learning, improve outcome prediction is tested. Methods: The proposed method is based on dividing the tumor volume into successive zones depending on the distance to the tumor border. Mean intensity changes are computed within each zone, for CT and PET scans separately, and used as image features for tumor response assessment. Doing so, tumors are described by accounting for temporal and spatial changes at the same time. Using linear support vector machines, the new features were tested on 30 non-small cell lung cancer patients who underwent sequential or concurrent chemoradiotherapy. Prediction of 2-years overall survival was based on two PET-CT scans, acquired before the start and during the first 3 weeks of treatment. The predictive power of the newly proposed longitudinal pattern features was compared to that of previously proposed radiomics features and radiobiological parameters. Results: The highest areas under the receiver operating characteristic curves were 0.98 and 0.93 for patients treated with sequential and concurrent chemoradiotherapy, respectively. Results showed an overall comparable performance with respect to radiomics features and radiobiological parameters. Conclusions: A novel set of quantitative image features, based on underlying tumor physiology, was computed from PET/CT scans and successfully employed to distinguish between early responders and non-responders to chemoradiotherapy.
  •  
29.
  • Bäcklin, Emelie, et al. (författare)
  • Pulmonary volumes and signs of chronic airflow limitation in quantitative computed tomography
  • 2024
  • Ingår i: Clinical Physiology and Functional Imaging. - : Wiley. - 1475-0961 .- 1475-097X. ; 44:4, s. 340-348
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundComputed tomography (CT) offers pulmonary volumetric quantification but is not commonly used in healthy individuals due to radiation concerns. Chronic airflow limitation (CAL) is one of the diagnostic criteria for chronic obstructive pulmonary disease (COPD), where early diagnosis is important. Our aim was to present reference values for chest CT volumetric and radiodensity measurements and explore their potential in detecting early signs of CAL.MethodsFrom the population-based Swedish CArdioPulmonarybioImage Study (SCAPIS), 294 participants aged 50–64, were categorized into non-CAL (n = 258) and CAL (n = 36) groups based on spirometry. From inspiratory and expiratory CT images we compared lung volumes, mean lung density (MLD), percentage of low attenuation volume (LAV%) and LAV cluster volume between groups, and against reference values from static pulmonary function test (PFT).ResultsThe CAL group exhibited larger lung volumes, higher LAV%, increased LAV cluster volume and lower MLD compared to the non-CAL group. Lung volumes significantly deviated from PFT values. Expiratory measurements yielded more reliable results for identifying CAL compared to inspiratory. Using a cut-off value of 0.6 for expiratory LAV%, we achieved sensitivity, specificity and positive/negative predictive values of 72%, 85% and 40%/96%, respectively.ConclusionWe present volumetric reference values from inspiratory and expiratory chest CT images for a middle-aged healthy cohort. These results are not directly comparable to those from PFTs. Measures of MLD and LAV can be valuable in the evaluation of suspected CAL. Further validation and refinement are necessary to demonstrate its potential as a decision support tool for early detection of COPD.
  •  
30.
  • Chang, Yongjun, et al. (författare)
  • Effects of preprocessing in slice-level classification of interstitial lung disease based on deep convolutional networks
  • 2018
  • Ingår i: VipIMAGE 2017. - Cham : Springer Netherlands. - 9783319681948 ; , s. 624-629
  • Konferensbidrag (refereegranskat)abstract
    • Several preprocessing methods are applied to the automatic classification of interstitial lung disease (ILD). The proposed methods are used for the inputs to an established convolutional neural network in order to investigate the effect of those preprocessing techniques to slice-level classification accuracy. Experimental results demonstrate that the proposed preprocessing methods and a deep learning approach outperformed the case of the original images input to deep learning without preprocessing.
  •  
31.
  • Chowdhury, Manish, et al. (författare)
  • Segmentation of Cortical Bone using Fast Level Sets
  • 2017
  • Ingår i: MEDICAL IMAGING 2017. - : SPIE - International Society for Optical Engineering. - 9781510607118
  • Konferensbidrag (refereegranskat)abstract
    • Cortical bone plays a big role in the mechanical competence of bone. The analysis of cortical bone requires accurate segmentation methods. Level set methods are usually in the state-of-the-art for segmenting medical images. However, traditional implementations of this method are computationally expensive. This drawback was recently tackled through the so-called coherent propagation extension of the classical algorithm which has decreased computation times dramatically. In this study, we assess the potential of this technique for segmenting cortical bone in interactive time in 3D images acquired through High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The obtained segmentations are used to estimate cortical thickness and cortical porosity of the investigated images. Cortical thickness and Cortical porosity is computed using sphere fitting and mathematical morphological operations respectively. Qualitative comparison between the segmentations of our proposed algorithm and a previously published approach on six images volumes reveals superior smoothness properties of the level set approach. While the proposed method yields similar results to previous approaches in regions where the boundary between trabecular and cortical bone is well defined, it yields more stable segmentations in challenging regions. This results in more stable estimation of parameters of cortical bone. The proposed technique takes few seconds to compute, which makes it suitable for clinical settings.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Dahlqvist Leinhard, Olof, 1978-, et al. (författare)
  • Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA : a pilot study
  • 2012
  • Ingår i: European Radiology. - : Springer Berlin/Heidelberg. - 0938-7994 .- 1432-1084. ; 22:3, s. 642-653
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives   To develop and evaluate a procedure for quantifying the hepatocyte-specific uptake of Gd-BOPTA and Gd-EOB-DTPA using dynamic contrast-enhanced (DCE) MRI. Methods   Ten healthy volunteers were prospectively recruited and 21 patients with suspected hepatobiliary disease were retrospectively evaluated. All subjects were examined with DCE-MRI using 0.025 mmol/kg of Gd-EOB-DTPA. The healthy volunteers underwent an additional examination using 0.05 mmol/kg of Gd-BOPTA. The signal intensities (SI) of liver and spleen parenchyma were obtained from unenhanced and enhanced acquisitions. Using pharmacokinetic models of the liver and spleen, and an SI rescaling procedure, a hepatic uptake rate, K Hep, estimate was derived. The K Hep values for Gd-EOB-DTPA were then studied in relation to those for Gd-BOPTA and to a clinical classification of the patient’s hepatobiliary dysfunction. Results   K Hep estimated using Gd-EOB-DTPA showed a significant Pearson correlation with K Hep estimated using Gd-BOPTA (r = 0.64; P < 0.05) in healthy subjects. Patients with impaired hepatobiliary function had significantly lower K Hep than patients with normal hepatobiliary function (K Hep = 0.09 ± 0.05 min-1 versus K Hep = 0.24 ± 0.10 min−1; P < 0.01). Conclusions   A new procedure for quantifying the hepatocyte-specific uptake of T 1-enhancing contrast agent was demonstrated and used to show that impaired hepatobiliary function severely influences the hepatic uptake of Gd-EOB-DTPA. Key Points   • The liver uptake of contrast agents may be measured with standard clinical MRI. • Calculation of liver contrast agent uptake is improved by considering splenic uptake. • Liver function affects the uptake of the liver-specific contrast agent Gd-EOB-DTPA. • Hepatic uptake of two contrast agents (Gd-EOB-DTPA, Gd-BOPTA) is correlated in healthy individuals. • This method can be useful for determining liver function, e.g. before hepatic surgery
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  • Dohlmar, Frida, et al. (författare)
  • Validation of automated post-adjustments of HDR prostate brachytherapy treatment plans by quantitative measures and oncologist observer study
  • 2023
  • Ingår i: Brachytherapy. - : Elsevier BV. - 1538-4721 .- 1873-1449. ; 22:3, s. 407-415
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The aim was to evaluate a postprocessing optimization algorithm's ability to improve the spatial properties of a clinical treatment plan while preserving the target coverage and the dose to the organs at risk. The goal was to obtain a more homogenous treatment plan, minimizing the need for manual adjustments after inverse treatment planning. MATERIALS AND METHODS: The study included 25 previously treated prostate cancer pa-tients. The treatment plans were evaluated on dose-volume histogram parameters established clin-ical and quantitative measures of the high dose volumes. The volumes of the four largest hot spots were compared and complemented with a human observer study with visual grading by eight oncologists. Statistical analysis was done using ordinal logistic regression. Weighted kappa and Fleiss' kappa were used to evaluate intra-and interobserver reliability. RESULTS: The quantitative analysis showed that there was no change in planning target volume (PTV) coverage and dose to the rectum. There were significant improvements for the adjusted treatment plan in: V150% and V200% for PTV, dose to urethra, conformal index, and dose nonhomogeneity ratio. The three largest hot spots for the adjusted treatment plan were significantly smaller compared to the clinical treatment plan. The observers preferred the adjusted treatment plan in 132 cases and the clinical in 83 cases. The observers preferred the adjusted treatment plan on homogeneity and organs at risk but preferred the clinical plan on PTV coverage. CONCLUSIONS: Quantitative analysis showed that the postadjustment optimization tool could improve the spatial properties of the treatment plans while maintaining the target coverage.
  •  
42.
  • Edvardsson, Hannes, et al. (författare)
  • Compact and efficient 3D shape description through radial function approximation
  • 2003
  • Ingår i: Computer Methods and Programs in Biomedicine. - 0169-2607 .- 1872-7565. ; 72:2, s. 89-97
  • Tidskriftsartikel (refereegranskat)abstract
    • A fast and simple method for three-dimensional shape description is described. The method views a 3D object as a radial distance function on the unit sphere, and thus reduces the dimensionality of the description problem by one. The radial distance function is approximated by Fourier methods in the basis of the spherical harmonic polynomials. The necessary integration is carried out on the object boundary, rather than on the unit sphere. Consequently, there is no need of a parameterisation of the object surface. The description makes it possible to compare shapes in a computationally very simple way. Solutions on how to cope with translated and rotated objects are discussed. The method is developed for star-shaped objects, but is stable even if the input image is non-star-shaped. The method is tested in a data set from magnetic resonance imaging (MRI) of the brain. Potential medical applications are discussed. ⌐ 2002 Elsevier Science Ireland Ltd. All rights reserved.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  • Guha, Indranil, et al. (författare)
  • A comparative study of trabecular bone micro-structural measurements using different CT modalities
  • 2020
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 65:23, s. 235029-
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis, characterized by reduced bone mineral density and micro-architectural degeneration, significantly enhances fracture-risk. There are several viable methods for trabecular bone micro-imaging, which widely vary in terms of technology, reconstruction principle, spatial resolution, and acquisition time. We have performed an excised cadaveric bone specimen study to evaluate different computed tomography (CT)-imaging modalities for trabecular bone micro-structural analysis. Excised cadaveric bone specimens from the distal radius were scanned using micro-CT and four in vivo CT imaging modalities: high-resolution peripheral quantitative computed tomography (HR-pQCT), dental cone beam CT (CBCT), whole-body multi-row detector CT (MDCT), and extremity CBCT. A new algorithm was developed to optimize soft thresholding parameters for individual in vivo CT modalities for computing quantitative bone volume fraction maps. Finally, agreement of trabecular bone micro-structural measures, derived from different in vivo CT imaging, with reference measures from micro-CT imaging was examined. Observed values of most trabecular measures, including trabecular bone volume, network area, transverse and plate-rod micro-structure, thickness, and spacing, for in vivo CT modalities were higher than their micro-CT-based reference values. In general, HR-pQCT-based trabecular bone measures were closer to their reference values as compared to other in vivo CT modalities. Despite large differences in observed values of measures among modalities, high linear correlation (r ∈ [0.94 0.99]) was found between micro-CT and in vivo CT-derived measures of trabecular bone volume, transverse and plate micro-structural volume, and network area. All HR-pQCT-derived trabecular measures, except the erosion index, showed high correlation (r ∈ [0.91 0.99]). The plate-width measure showed a higher correlation (r ∈ [0.72 0.91]) among in vivo and micro-CT modalities than its counterpart binary plate-rod characterization-based measure erosion index (r ∈ [0.65 0.81]). Although a strong correlation was observed between micro-structural measures from in vivo and micro-CT imaging, large shifts in their values for in vivo modalities warrant proper scanner calibration prior to adopting in multi-site and longitudinal studies.
  •  
47.
  • Hadimeri, Ursula, et al. (författare)
  • Fistula diameter correlates with echocardiographic characteristics in stable hemodialysis patients
  • 2015
  • Ingår i: NEPHROLOGY @ POINT OF CARE. - : Wichtig Publishing. - 2059-3007. ; 1:1, s. E44-E48
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims and background: Left ventricular hypertrophy (LVH) is a common finding in hemodialysis patients. The aim of the present study was to investigate if the diameter of the distal radiocephalic fistula could influence left ventricular variables in stable hemodialysis patients.Methods: Nineteen patients were investigated. Measurements of the diameter of the arteriovenous (AV) fistula were performed in 4 different locations. The patients were investigated using M-mode recordings and measurements in the 2D image. Doppler ultrasound was also performed. Transonic measurements were performed after ultrasound investigation.Results: Fistula mean and maximal diameter correlated with left ventricular characteristics. Fistula flow correlated neither with the left ventricular characteristics nor with fistula diameters.Conclusions: The maximal diameter of the distal AV fistula seems to be a sensitive marker of LVH in stable hemodialysis patients.
  •  
48.
  • Hernell, Frida, 1980-, et al. (författare)
  • A blending technique for enhanced depth perception in medical x-ray vision applications
  • 2007
  • Ingår i: Medicine Meets Virtual Reality 15. - : IOS Press. - 9781586037130 - 9781607502258 ; , s. 176-178
  • Konferensbidrag (refereegranskat)abstract
    • Depth perception is a common problem for x-ray vision in augmented reality applications since the goal is to visualize occluded and embedded objects. In this paper we present an x-ray vision blending method for neurosurgical applications that intensifies the interposition depth cue in order to achieve enhanced depth perception. The proposed technique emphasizes important structures, which provides the user with an improved depth context.
  •  
49.
  • Hol, P K, et al. (författare)
  • MRI-guided celiac plexus block
  • 2000
  • Ingår i: Magnetic Resonance Imaging. - 0730-725X .- 1873-5894. ; 12, s. 562-564
  • Tidskriftsartikel (refereegranskat)
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 160
Typ av publikation
tidskriftsartikel (75)
konferensbidrag (71)
doktorsavhandling (6)
bokkapitel (4)
annan publikation (2)
forskningsöversikt (2)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (124)
övrigt vetenskapligt/konstnärligt (36)
Författare/redaktör
Smedby, Örjan, 1956- (103)
Smedby, Örjan, Profe ... (56)
Wang, Chunliang, 198 ... (37)
Lundberg, Peter, 195 ... (22)
Dahlqvist Leinhard, ... (18)
Brismar, Torkel (13)
visa fler...
Astaraki, Mehdi, PhD ... (11)
Toma-Daşu, Iuliana (8)
Kechagias, Stergios (7)
Klintström, Benjamin (7)
Forsgren, Mikael (7)
Almer, Sven (5)
Sandborg, Michael, 1 ... (5)
Romu, Thobias (4)
Brismar, T (4)
Aalto, Anne, 1971- (3)
Tisell, Anders, 1981 ... (3)
Landtblom, Anne-Mari ... (3)
Borga, Magnus (3)
Lundberg, Peter (3)
Nilsson, Sven (3)
Nyström, Ingela (3)
Fransson, Sven Göran (3)
Buizza, Giulia (3)
Lazzeroni, Marta (3)
Westman, Eric (2)
Yang, Guang (2)
Pettersson, K (2)
Johansson, Jan (2)
Blystad, Ida, 1972- (2)
Klintström, Eva, 195 ... (2)
Frimmel, Hans (2)
Larsson, Elna-Marie (2)
Persson, Anders (2)
Dahlqvist Leinhard, ... (2)
Pereira, Joana B. (2)
Brismar, Torkel B. (2)
Andersson, Leif (2)
Albiin, N (2)
Sandström, Per (2)
Sandborg, Michael (2)
Almer, Sven, 1953- (2)
Tingberg, Anders (2)
Wang, Chunliang (2)
Norén, Bengt (2)
Stenström, Hugo, 194 ... (2)
Walldius, Göran (2)
Ressner, Marcus, 196 ... (2)
Zakko, Yousuf (2)
Wang, Chunliang, Doc ... (2)
visa färre...
Lärosäte
Linköpings universitet (102)
Kungliga Tekniska Högskolan (85)
Karolinska Institutet (26)
Uppsala universitet (9)
Stockholms universitet (3)
Lunds universitet (3)
visa fler...
Göteborgs universitet (1)
Umeå universitet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (159)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Teknik (59)
Medicin och hälsovetenskap (50)
Naturvetenskap (15)
Samhällsvetenskap (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy