SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smiljanic Rodolfo) "

Sökning: WFRF:(Smiljanic Rodolfo)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergemann, Maria, et al. (författare)
  • The Gaia-ESO Survey : Hydrogen lines in red giants directly trace stellar mass
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples: age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the missing link in the chain, since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows determining stellar masses and ages with an accuracy of 10-15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < T-eff < 5000 K, 0.5 < log g < 3.5, -2.0 < [ Fe/H] < 0.3, and luminosities log L/L-Sun < 2.5. Our analysis provides observational evidence that the H-alpha spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows obtaining simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies such as Andromeda or the Magellanic Clouds even with current instrumentation, such as the VLT and Keck facilities.
  •  
2.
  • Brucalassi, Anna, et al. (författare)
  • A high resolution multi-object spectrograph for the VLT : a pre-concept design
  • 2022
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy IX. - : SPIE. - 1996-756X .- 0277-786X. - 9781510653498 ; 12184
  • Konferensbidrag (refereegranskat)abstract
    • Following the idea originally proposed during the ESO-Workshop The Very Large Telescope in 2030, the concept of a high resolution spectrograph for the VLT has been further explored, both for the science and technological aspects. Such an instrument will fill a gap in capabilities amongst the landscape of future instrumentation planned for the next decade. Its key characteristic will be high spectral resolution (R = 60000-80000) with multi-object (50-100) capabilities and, possibly, a stability that would provide high radial velocity precision (∼10m/s). In this work, we describe the science cases and driving science requirements for the instrument. Furthermore we will present some design solutions and technical options considered to meet these requirements.
  •  
3.
  • Franchini, Mariagrazia, et al. (författare)
  • The Gaia-ESO Survey : Carbon Abundance in the Galactic Thin and Thick Disks
  • 2020
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 888:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on carbon, which is one of the most abundant elements in the universe and is of high importance in the field of nucleosynthesis and galactic and stellar evolution. The origin of carbon and the relative importance of massive and low- to intermediate-mass stars in producing it is still a matter of debate. We aim at better understanding the origin of carbon by studying the trends of [C/H], [C/Fe], and [C/Mg] versus [Fe/H] and [Mg/H] for 2133 FGK dwarf stars from the fifth Gaia-ESO Survey internal data release (GES iDR5). The availability of accurate parallaxes and proper motions from Gaia DR2 and radial velocities from GES iDR5 allows us to compute Galactic velocities, orbits, absolute magnitudes, and, for 1751 stars, Bayesian-derived ages. Three different selection methodologies have been adopted to discriminate between thin- and thick-disk stars. In all the cases, the two stellar groups show different [C/H], [C/Fe], and [C/Mg] and span different age intervals, with the thick-disk stars being, on average, older than the thin-disk ones. The behaviors of [C/H], [C/Fe], and [C/Mg] versus [Fe/H], [Mg/H], and age all suggest that C is primarily produced in massive stars. The increase of [C/Mg] for young thin-disk stars indicates a contribution from low-mass stars or the increased C production from massive stars at high metallicities due to the enhanced mass loss. The analysis of the orbital parameters R-med and supports an "inside-out" and "upside-down" formation scenario for the disks of the Milky Way.
  •  
4.
  • Franchini, Mariagrazia, et al. (författare)
  • The Gaia-ESO Survey : Oxygen Abundance in the Galactic Thin and Thick Disks*
  • 2021
  • Ingår i: Astronomical Journal. - : Institute of Physics Publishing (IOPP). - 0004-6256 .- 1538-3881. ; 161:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze the oxygen abundances of a stellar sample representative of the two major Galactic populations: the thin and thick disks. The aim is to investigate the differences between members of the Galactic disks and contribute to the understanding of the origin of oxygen chemical enrichment in the Galaxy. The analysis is based on the [O i] = 6300.30 A oxygen line in high-resolution spectra (R similar to 52,500) obtained from the Gaia-ESO public spectroscopic Survey (GES). By comparing the observed spectra with a theoretical data set computed in LTE with the SPECTRUM synthesis and ATLAS12 codes, we derive the oxygen abundances of 516 FGK dwarfs for which we have previously measured carbon abundances. Based on kinematic, chemical, and dynamical considerations, we identify 20 thin and 365 thick disk members. We study the potential trends of both subsamples in terms of their chemistry ([O/H], [O/Fe], [O/Mg], and [C/O] versus [Fe/H] and [Mg/H]), age, and position in the Galaxy. The main results are that (a) [O/H] and [O/Fe] ratios versus [Fe/H] show systematic differences between thin and thick disk stars with an enhanced O abundance of thick disk stars with respect to thin disk members and a monotonic decrement of [O/Fe] with increasing metallicity, even at metal-rich regime; (b) there is a smooth correlation of [O/Mg] with age in both populations, suggesting that this abundance ratio can be a good proxy of stellar ages within the Milky Way; and (c) thin disk members with [Fe/H] 0 display a [C/O] ratio smaller than the solar value, suggesting a possibly outward migration of the Sun from lower Galactocentric radii.
  •  
5.
  • Semenova, Ekaterina, et al. (författare)
  • The Gaia -ESO survey : 3D NLTE abundances in the open cluster NGC 2420 suggest atomic diffusion and turbulent mixing are at the origin of chemical abundance variations
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic diusion and mixing processes in stellar interiors influence the structure and the surface composition of stars. Some of these processes cannot yet be modelled from the first principles, and they require calibrations. This limits their applicability in stellar models used for studies of stellar populations and Galactic evolution. Aims. Our main goal is to put constraints on the stellar structure and evolution models using new refined measurements of the chemical composition in stars of a Galactic open cluster. Methods.We used medium-resolution, 19 200 R 21 500, optical spectra of stars in the open cluster NGC2420 obtained within the Gaia-ESO survey. The sample covers all evolutionary stages from the main sequence to the red giant branch. Stellar parameters were derived using a combined Bayesian analysis of spectra, 2MASS photometry, and astrometric data from Gaia DR2. The abundances of Mg, Ca, Fe, and Li were determined from non-local thermodynamic equilibrium (NLTE) synthetic spectra, which were computed using one-dimensional (1D) and averaged three-dimensional (3D) model atmospheres. We compare our results with a grid of Code d'Evolution Stellaire Adaptatif et Modulaire (CESTAM) stellar evolution models, which include atomic diusion, turbulent, and rotational mixing. Results. We find prominent evolutionary trends in the abundances of Fe, Ca, Mg, and Li with the mass of the stars in the cluster. Furthermore, Fe, Mg, and Ca show a depletion at the cluster turn-o, but the abundances gradually increase and flatten near the base of the red giant branch. The abundance trend for Li displays a signature of rotational mixing on the main sequence and abrupt depletion on the sub-giant branch, which is caused by advection of Li-poor material to the surface. The analysis of abundances combined with the CESTAM model predictions allows us to place limits on the parameter space of the models and to constrain the zone in the stellar interior, where turbulent mixing takes place.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy