SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Snoj L.) "

Sökning: WFRF:(Snoj L.)

  • Resultat 1-42 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
4.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
6.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
33.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
34.
  •  
35.
  • Batistoni, Paola, et al. (författare)
  • Calibration of neutron detectors on the Joint European Torus
  • 2017
  • Ingår i: Review of Scientific Instruments. - : AMER INST PHYSICS. - 0034-6748 .- 1089-7623. ; 88:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a Cf-252 source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) Cf-252 source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.
  •  
36.
  •  
37.
  •  
38.
  • Stancar, Z., et al. (författare)
  • Experimental validation of an integrated modelling approach to neutron emission studies at JET
  • 2021
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 61:12
  • Tidskriftsartikel (refereegranskat)abstract
    • An integrated modelling methodology for the calculation of realistic plasma neutron sources for the JET tokamak has been developed. The computational chain comprises TRANSP plasma transport and DRESS neutron spectrum calculations, and their coupling to the MCNP neutron transport code, bridging plasma physics and neutronics. In the paper we apply the developed methodology to the analysis of neutron emission properties of deuterium and helium plasmas at JET, and validate individual modelling steps against neutron diagnostic measurements. Two types of JET discharges are modelled-baseline-like and three-ion radio-frequency scenarios-due to their diversity in plasma heating, characteristics of the induced fast ion population, and the imprint of these on neutron emission properties. The neutron emission modelling results are quantitatively compared to the total neutron yield from fission chambers, neutron emissivity profiles from the neutron camera, neutron spectra from the time-of-flight spectrometer, and neutron activation measurements. The agreement between measured and calculated quantities is found to be satisfactory for all four diagnostic systems within the estimated experimental and computational uncertainties. Additionally, the effect of neutrons not originating from the dominating D(D, n)He-3 reactions is studied through modelling of triton burnup DT neutrons, and, in mixed D-He-3 plasmas, neutrons produced in the Be-9(D, n gamma)B-10 reaction on impurities. It is found that these reactions can contribute up to several percent to the total neutron yield and dominate the neutron activation of samples. The effect of MeV-range fast ions on the neutron activation of In-115 and Al-27 samples is measured and computationally validated.
  •  
39.
  • Stancar, Ziga, et al. (författare)
  • Multiphysics approach to plasma neutron source modelling at the JET tokamak
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel multiphysics methodology for the computation of realistic plasma neutron sources has been developed. The method is based on state-of-the-art plasma transport and neutron spectrum calculations, coupled with a Monte Carlo neutron transport code, bridging the gap between plasma physics and neutronics. In the paper two JET neutronics tokamak models are used to demonstrate the application of the developed plasma neutron sources and validate them. Diagnostic data for the record JET D discharge 92436 are used as input for the TRANSP code, modelling neutron emission in two external plasma heating scenarios, namely using only neutral beam injection and a combination of the latter and ion cyclotron resonance heating. Neutron spectra, based on plasma transport results, are computed using the DRESS code. The developed PLANET code package is employed to generate plasma neutron source descriptions and couple them with the MCNP code. The effects of using the developed sources in neutron transport calculations on the response of JET neutron diagnostic systems is studied and compared to the results obtained with a generic plasma neutron source. It is shown that, although there are significant differences in the emissivity profiles, spectra shape and anisotropy between the neutron sources, the integral response of the time-resolved ex-vessel neutron detectors is largely insensitive to source changes, with major relative deviations of up to several percent. However it is calculated that, due to the broadening of neutron spectra as a consequence of external plasma heating, larger differences may occur in activation of materials which have threshold reactions located at DD neutron peak energies. The PLANET plasma neutron source computational methodology is demonstrated to be suitable for detailed neutron source effect studies on JET during DT experiments and can be applied to ITER analyses.
  •  
40.
  • Syme, D. B., et al. (författare)
  • Fusion yield measurements on JET and their calibration
  • 2014
  • Ingår i: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 89:11, s. 2766-2775
  • Tidskriftsartikel (refereegranskat)abstract
    • The power output of fusion experiments and fusion reactor-like devices is measured in terms of the neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods used to make the new in situ calibration of JET in April 2013 and its early results. The target accuracy of this calibration was 10%, just as in the earlier JET calibration and as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. We discuss the constraints and early decisions which defined the main calibration approach, e.g., the choice of source type and the deployment method. We describe the physics, source issues, safety and engineering aspects required to calibrate directly the Fission Chambers and the Activation System which carry the JET neutron calibration. In particular a direct calibration of the Activation system was planned for the first time in JET. We used the existing JET remote-handling system to deploy the Cf-252 source and developed the compatible tooling and systems necessary to ensure safe and efficient deployment in these cases. The scientific programme has sought to better understand the limitations of the calibration, to optimise the measurements and other provisions, to provide corrections for perturbing factors (e.g., presence of the remote-handling boom and other non-standard torus conditions) and to ensure personnel safety and safe working conditions. Much of this work has been based on an extensive programme of Monte-Carlo calculations which, e.g., revealed a potential contribution to the neutron yield via a direct line of sight through the ports which presents individually depending on the details of the port geometry.
  •  
41.
  •  
42.
  • Syme, Brian, et al. (författare)
  • Fusion yield measurements on JET and their calibration
  • 2012
  • Ingår i: Nuclear Engineering and Design. - : Elsevier. - 0029-5493 .- 1872-759X. ; 246, s. 185-190
  • Tidskriftsartikel (refereegranskat)abstract
    • The power output of fusion experiments and fusion reactor-like devices is measured in terms of the neutron emission rates which relate directly to the fusion yield rate. Determination of such parameters requires a set of absolutely calibrated neutron detectors. At JET, the Fission Chamber neutron detectors were originally calibrated some 20 years ago by performing a set of in-situ calibrations using neutron sources and the absolute calibration has been maintained since then by cross calibrations against Activation System measurements. After this elapsed time and a succession of changes to the internal and external JET structures, the JET neutron yield calibration needs re-measurement. The purpose of this paper is to give an overview of the arrangements being developed to allow a new calibration to be made. A new, more detailed, calibration is being provided by means of an engineering programme of development of the robotic tools which will allow safe and accurate deployment of a strong Cf-252 source for the measurements. It is led by a scientific programme which seeks to better understand the limitations of the calibration, to optimise the measurements and other provisions, to provide corrections for perturbing factors and to ensure personnel safety and safe working conditions. Much of this work is based on an extensive programme of Monte-Carlo calculations. These include the updating of previous JET models to provide continuity of comparison with previous understanding, the provision of fast models for side effect estimation and the development of a new more detailed JET model which will allow comparisons with the older more homogeneous model while coping with the demands of the new calibration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-42 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy