SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Soanes K) "

Sökning: WFRF:(Soanes K)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Ferrari, A., et al. (författare)
  • Adolescents and young adults (AYA) with cancer : a position paper from the AYA Working Group of the European Society for Medical Oncology (ESMO) and the European Society for Paediatric Oncology (SIOPE)
  • 2021
  • Ingår i: ESMO Open. - : Elsevier BV. - 2059-7029. ; 6:2
  • Forskningsöversikt (refereegranskat)abstract
    • It is well recognised that adolescents and young adults (AYA) with cancer have inequitable access to oncology services that provide expert cancer care and consider their unique needs. Subsequently, survival gains in this patient population have improved only modestly compared with older adults and children with cancer. In 2015, the European Society for Medical Oncology (ESMO) and the European Society for Paediatric Oncology (SIOPE) established the joint Cancer in AYA Working Group in order to increase awareness among adult and paediatric oncology communities, enhance knowledge on specific issues in AYA and ultimately improve the standard of care for AYA with cancer across Europe. This manuscript reflects the position of this working group regarding current AYA cancer care, the challenges to be addressed and possible solutions. Key challenges include the lack of specific biological understanding of AYA cancers, the lack of access to specialised centres with age-appropriate multidisciplinary care and the lack of available clinical trials with novel therapeutics. Key recommendations include diversifying interprofessional cooperation in AYA care and specific measures to improve trial accrual, including centralising care where that is the best means to achieve trial accrual. This defines a common vision that can lead to improved outcomes for AYA with cancer in Europe.
  •  
3.
  • Gentekaki, Eleni, et al. (författare)
  • Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis
  • 2017
  • Ingår i: PLoS biology. - : PUBLIC LIBRARY SCIENCE. - 1544-9173 .- 1545-7885. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize alpha-glucans rather than beta-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy