SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sourbron S.) "

Sökning: WFRF:(Sourbron S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dickie, B., et al. (författare)
  • A community-endorsed open-source lexicon for contrast agent-based perfusion MRI: A consensus guidelines report from the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI)
  • 2024
  • Ingår i: Magnetic Resonance in Medicine. - 0740-3194. ; 91:5, s. 1761-1773
  • Tidskriftsartikel (refereegranskat)abstract
    • This manuscript describes the ISMRM OSIPI (Open Science Initiative for Perfusion Imaging) lexicon for dynamic contrast-enhanced and dynamic susceptibility-contrast MRI. The lexicon was developed by Taskforce 4.2 of OSIPI to provide standardized definitions of commonly used quantities, models, and analysis processes with the aim of reducing reporting variability. The taskforce was established in February 2020 and consists of medical physicists, engineers, clinicians, data and computer scientists, and DICOM (Digital Imaging and Communications in Medicine) standard experts. Members of the taskforce collaborated via a slack channel and quarterly virtual meetings. Members participated by defining lexicon items and reporting formats that were reviewed by at least two other members of the taskforce. Version 1.0.0 of the lexicon was subject to open review from the wider perfusion imaging community between January and March 2022, and endorsed by the Perfusion Study Group of the ISMRM in the summer of 2022. The initial scope of the lexicon was set by the taskforce and defined such that it contained a basic set of quantities, processes, and models to enable users to report an end-to-end analysis pipeline including kinetic model fitting. We also provide guidance on how to easily incorporate lexicon items and definitions into free-text descriptions (e.g., in manuscripts and other documentation) and introduce an XML-based pipeline encoding format to encode analyses using lexicon definitions in standardized and extensible machine-readable code. The lexicon is designed to be open-source and extendable, enabling ongoing expansion of its content. We hope that widespread adoption of lexicon terminology and reporting formats described herein will increase reproducibility within the field.
  •  
2.
  • Elsharif, Mohamed, et al. (författare)
  • Hepatectomy risk assessment with functional magnetic resonance imaging (HEPARIM)
  • 2021
  • Ingår i: BMC Cancer. - : BMC. - 1471-2407. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Post hepatectomy liver failure (PHLF) remains a significant risk in patients undergoing curative liver resection for cancer, however currently available PHLF risk prediction investigations are not sufficiently accurate. The Hepatectomy risk assessment with functional magnetic resonance imaging trial (HEPARIM) aims to establish if quantitative MRI biomarkers of liver function & perfusion can be used to more accurately predict PHLF risk and FLR function, measured against indocyanine green (ICG) liver function test. Methods: HEPARIM is an observational cohort study recruiting patients undergoing liver resection of 2 segments or more, prior to surgery patients will have both Dynamic Gadoxetate-enhanced (DGE) liver MRI and ICG testing. Day one post op ICG testing is repeated and R15 compared to the Gadoxetate Clearance (GC) of the future liver remnant (FLR-GC) as measure by preoperative DGE- MRI which is the primary outcome, and preoperative ICG R15 compared to GC of whole liver (WL-GC) as a secondary outcome. Data will be collected from medical records, biochemistry, pathology and radiology reports and used in a multi-variate analysis to the value of functional MRI and derive multivariant prediction models for future validation. Discussion: If successful, this test will potentially provide an efficient means to quantitatively assess FLR function and PHLF risk enabling surgeons to push boundaries of liver surgery further while maintaining safe practice and thereby offering chance of cure to patients who would previously been deemed inoperable. MRI has the added benefit of already being part of the routine diagnostic pathway and as such would have limited additional burden on patients time or cost to health care systems. (Hepatectomy Risk Assessment With Functional Magnetic Resonance Imaging - Full Text View -, n.d.)
  •  
3.
  • Scotcher, Daniel, et al. (författare)
  • Physiologically Based Pharmacokinetic Modeling of TransporterMediated Hepatic Disposition of Imaging Biomarker Gadoxetate in Rats
  • 2021
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 18:8, s. 2997-3009
  • Tidskriftsartikel (refereegranskat)abstract
    • Physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2). In this study, we developed a gadoxetate PBPK model and explored the use of liver-imaging data to achieve and refine in vitro-in vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic data. In addition, PBPK modeling was used to investigate gadoxetate hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced (DCE) MRI data of gadoxetate in rat blood, spleen, and liver were used in this analysis. Gadoxetate in vitro uptake kinetic data were generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte uptake unbound Michaelis-Menten constant (K-m,K-u) of gadoxetate was 106 mu M (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total uptake into hepatocytes. PBPK-IVIVE of these data (bottom-up approach) captured reasonably systemic exposure, but underestimated the in vivo gadoxetate DCE-MRI profiles and elimination from the liver. Therefore, in vivo rat DCE-MRI liver data were subsequently used to refine gadoxetate transporter kinetic parameters in the PBPK model (top-down approach). Active uptake into the hepatocytes refined by the liver-imaging data was one order of magnitude higher than the one predicted by the IVIVE approach. Finally, the PBPK model was fitted to the gadoxetate DCE-MRI data (blood, spleen, and liver) obtained with and without coadministered rifampicin. Rifampicin was estimated to inhibit active uptake transport of gadoxetate into the liver by 96%. The current analysis highlighted the importance of gadoxetate liver data for PBPK model refinement, which was not feasible when using the blood data alone, as is common in PBPK modeling applications. The results of our study demonstrate the utility of organ-imaging data in evaluating and refining PBPK transporter IVIVE to support the subsequent model use for quantitative evaluation of hepatic tDDI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy