SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spang Anja) "

Sökning: WFRF:(Spang Anja)

  • Resultat 1-39 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bäckström, Disa, et al. (författare)
  • Virus Genomes from Deep Sea Sediments Expand the Ocean Megavirome and Support Independent Origins of Viral Gigantism
  • 2019
  • Ingår i: mBio. - 2161-2129 .- 2150-7511. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The nucleocytoplasmic large DNA viruses (NCLDV) of eukaryotes (proposed order, “Megavirales”) include the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Marseilleviridae, and Mimiviridae, as well as still unclassified pithoviruses, pandoraviruses, molliviruses, and faustoviruses. Several of these virus groups include giant viruses, with genome and particle sizes exceeding those of many bacterial and archaeal cells. We explored the diversity of the NCLDV in deep sea sediments from the Loki’s Castle hydrothermal vent area. Using metagenomics, we reconstructed 23 high-quality genomic bins of novel NCLDV, 15 of which are related to pithoviruses, 5 to marseilleviruses, 1 to iridoviruses, and 2 to klosneuviruses. Some of the identified pithovirus-like and marseillevirus-like genomes belong to deep branches in the phylogenetic tree of core NCLDV genes, substantially expanding the diversity and phylogenetic depth of the respective groups. The discovered viruses, including putative giant members of the family Marseilleviridae, have a broad range of apparent genome sizes, in agreement with the multiple, independent origins of gigantism in different branches of the NCLDV. Phylogenomic analysis reaffirms the monophyly of the pithovirus-iridovirus-marseillevirus branch of the NCLDV. Similarly to other giant viruses, the pithovirus-like viruses from Loki’s Castle encode translation systems components. Phylogenetic analysis of these genes indicates a greater bacterial contribution than had been detected previously. Genome comparison suggests extensive gene exchange between members of the pithovirus-like viruses and Mimiviridae. Further exploration of the genomic diversity of Megavirales in additional sediment samples is expected to yield new insights into the evolution of giant viruses and the composition of the ocean megavirome.Importance: Genomics and evolution of giant viruses are two of the most vigorously developing areas of virus research. Lately, metagenomics has become the main source of new virus genomes. Here we describe a metagenomic analysis of the genomes of large and giant viruses from deep sea sediments. The assembled new virus genomes substantially expand the known diversity of the nucleocytoplasmic large DNA viruses of eukaryotes. The results support the concept of independent evolution of giant viruses from smaller ancestors in different virus branches.
  •  
3.
  • Camprubi, E., et al. (författare)
  • The Emergence of Life
  • 2019
  • Ingår i: Space Science Reviews. - : SPRINGER. - 0038-6308 .- 1572-9672. ; 215:8
  • Forskningsöversikt (refereegranskat)abstract
    • The aim of this article is to provide the reader with an overview of the different possible scenarios for the emergence of life, to critically assess them and, according to the conclusions we reach, to analyze whether similar processes could have been conducive to independent origins of life on the several icy moons of the Solar System. Instead of directly proposing a concrete and unequivocal cradle of life on Earth, we focus on describing the different requirements that are arguably needed for the transition between non-life to life. We approach this topic from geological, biological, and chemical perspectives with the aim of providing answers in an integrative manner. We reflect upon the most prominent origins hypotheses and assess whether they match the aforementioned abiogenic requirements. Based on the conclusions extracted, we address whether the conditions for abiogenesis are/were met in any of the oceanic icy moons.
  •  
4.
  • Coleman, Gareth A., et al. (författare)
  • A rooted phylogeny resolves early bacterial evolution
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 372:6542
  • Tidskriftsartikel (refereegranskat)abstract
    • A rooted bacterial tree is necessary to understand early evolution, but the position of the root is contested. Here, we model the evolution of 11,272 gene families to identify the root, extent of horizontal gene transfer (HGT), and the nature of the last bacterial common ancestor (LBCA). Our analyses root the tree between the major clades Terrabacteria and Gracilicutes and suggest that LBCA was a free-living flagellated, rod-shaped double-membraned organism. Contrary to recent proposals, our analyses reject a basal placement of the Candidate Phyla Radiation, which instead branches sister to Chloroflexota within Terrabacteria. While most gene families (92%) have evidence of HGT, overall, two-thirds of gene transmissions have been vertical, suggesting that a rooted tree provides a meaningful frame of reference for interpreting bacterial evolution.
  •  
5.
  • Dharamshi, Jennah E., et al. (författare)
  • Marine Sediments Illuminate Chlamydiae Diversity and Evolution
  • 2020
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 30:6, s. 1032-1048.e7
  • Tidskriftsartikel (refereegranskat)abstract
    • The bacterial phylum Chlamydiae is so far composed of obligate symbionts of eukaryotic hosts. Well known for Chlamydiaceae, pathogens of humans and other animals, Chlamydiae also include so-called environmental lineages that primarily infect microbial eukaryotes. Environmental surveys indicate that Chlamydiae are found in a wider range of environments than anticipated previously. However, the vast majority of this chlamydial diversity has been underexplored, biasing our current understanding of their biology, ecological importance, and evolution. Here, we report that previously undetected and active chlamydial lineages dominate microbial communities in deep anoxic marine sediments taken from the Arctic Mid-Ocean Ridge. Reaching relative abundances of up to 43% of the bacterial community, and a maximum diversity of 163 different species-level taxonomic units, these Chlamydiae represent important community members. Using genome-resolved metagenomics, we reconstructed 24 draft chlamydial genomes, expanding by over a third the known genomic diversity in this phylum. Phylogenomic analyses revealed several novel clades across the phylum, including a previously unknown sister lineage of the Chlamydiaceae, providing new insights into the origin of pathogenicity in this family. We were unable to identify putative eukaryotic hosts for these marine sediment chlamydiae, despite identifying genomic features that may be indicative of host-association. The high abundance and genomic diversity of Chlamydiae in these anoxic marine sediments indicate that some members could play an important, and thus far overlooked, ecological role in such environments and may indicate alternate lifestyle strategies.
  •  
6.
  • Dombrowski, Nina, et al. (författare)
  • Genomic diversity, lifestyles and evolutionary origins of DPANN archaea
  • 2019
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 0378-1097 .- 1574-6968. ; 366:2
  • Forskningsöversikt (refereegranskat)abstract
    • Archaea-a primary domain of life besides Bacteriahave for a long time been regarded as peculiar organisms that play marginal roles in biogeochemical cycles. However, this picture changed with the discovery of a large diversity of archaea in non-extreme environments enabled by the use of cultivation-independent methods. These approaches have allowed the reconstruction of genomes of uncultivated microorganisms and revealed that archaea are diverse and broadly distributed in the biosphere and seemingly include a large diversity of putative symbiotic organisms, most of which belong to the tentative archaeal superphylum referred to as DPANN. This archaeal group encompasses at least 10 different lineages and includes organisms with extremely small cell and genome sizes and limited metabolic capabilities. Therefore, many members of DPANN may be obligately dependent on symbiotic interactions with other organisms and may even include novel parasites. In this contribution, we review the current knowledge of the gene repertoires and lifestyles of members of this group and discuss their placement in the tree of life, which is the basis for our understanding of the deep microbial roots and the role of symbiosis in the evolution of life on Earth.
  •  
7.
  • Dombrowski, Nina, et al. (författare)
  • Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently discovered DPANN archaea are a potentially deep-branching, monophyletic radiation of organisms with small cells and genomes. However, the monophyly and early emergence of the various DPANN clades and their role in life's evolution are debated. Here, we reconstructed and analysed genomes of an uncharacterized archaeal phylum (Candidatus Undinarchaeota), revealing that its members have small genomes and, while potentially being able to conserve energy through fermentation, likely depend on partner organisms for the acquisition of certain metabolites. Our phylogenomic analyses robustly place Undinarchaeota as an independent lineage between two highly supported 'DPANN' clans. Further, our analyses suggest that DPANN have exchanged core genes with their hosts, adding to the difficulty of placing DPANN in the tree of life. This pattern can be sufficiently dominant to allow identifying known symbiont-host clades based on routes of gene transfer. Together, our work provides insights into the origins and evolution of DPANN and their hosts. The evolutionary relationships within Archaea remain unresolved. Here, the authors used genomic approaches to study the Undinarchaeota, a previously uncharacterized clade of DPANN, shed light on their position in an updated archaeal phylogeny and illuminate the history of archaeal genome evolution.
  •  
8.
  • Eme, Laura, et al. (författare)
  • Archaea and the origin of eukaryotes
  • 2018
  • Ingår i: Nature Reviews Microbiology. - : Springer Nature. - 1740-1526 .- 1740-1534. ; 16:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This corrects the article DOI: 10.1038/nrmicro.2017.133.
  •  
9.
  • Eme, Laura, et al. (författare)
  • Archaea and the origin of eukaryotes
  • 2017
  • Ingår i: Nature Reviews Microbiology. - : Springer Science and Business Media LLC. - 1740-1526 .- 1740-1534. ; 15:12, s. 711-723
  • Forskningsöversikt (refereegranskat)abstract
    • Woese and Fox's 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor.
  •  
10.
  • Greening, Chris, et al. (författare)
  • Minimal and hybrid hydrogenases are active from archaea
  • Ingår i: Cell. - 1097-4172. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial hydrogen (H 2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H 2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H 2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H 2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H 2-metabolizing enzymes.
  •  
11.
  •  
12.
  • Kellner, Siri, et al. (författare)
  • Genome size evolution in the Archaea
  • 2018
  • Ingår i: Emerging Topics in Life Sciences. - : Portland Press. - 2397-8554 .- 2397-8562. ; 2:4, s. 595-605
  • Forskningsöversikt (refereegranskat)abstract
    • What determines variation in genome size, gene content and genetic diversity at the broadest scales across the tree of life? Much of the existing work contrasts eukaryotes with prokaryotes, the latter represented mainly by Bacteria. But any general theory of genome evolution must also account for the Archaea, a diverse and ecologically important group of prokaryotes that represent one of the primary domains of cellular life. Here, we survey the extant diversity of Bacteria and Archaea, and ask whether the general principles of genome evolution deduced from the study of Bacteria and eukaryotes also apply to the archaeal domain. Although Bacteria and Archaea share a common prokaryotic genome architecture, the extant diversity of Bacteria appears to be much higher than that of Archaea. Compared with Archaea, Bacteria also show much greater genome-level specialisation to specific ecological niches, including parasitism and endosymbiosis. The reasons for these differences in long-term diversification rates are unclear, but might be related to fundamental differences in informational processing machineries and cell biological features that may favour archaeal diversification in harsher or more energy-limited environments. Finally, phylogenomic analyses suggest that the first Archaea were anaerobic autotrophs that evolved on the early Earth.
  •  
13.
  • Klinger, Christen M., et al. (författare)
  • Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks
  • 2016
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 33:6, s. 1528-1541
  • Tidskriftsartikel (refereegranskat)abstract
    • In contrast to prokaryotes, eukaryotic cells are characterized by a complex set of internal membrane-bound compartments. A subset of these, and the protein machineries that move material between them, define the membrane-trafficking system (MTS), the emergence of which represents a landmark in eukaryotic evolution. Unlike mitochondria and plastids, MTS organelles have autogenous origins. Much of the MTS machinery is composed of building blocks, including small GTPase, coiled-coil, beta-propeller + alpha-solenoid, and longin domains. Despite the identification of prokaryotic proteins containing these domains, only few represent direct orthologues, leaving the origins and early evolution of the MTS poorly understood. Here, we present an in-depth analysis of MTS building block homologues in the composite genome of Lokiarchaeum, the recently discovered archaeal sister clade of eukaryotes, yielding several key insights. We identify two previously unreported Eukaryotic Signature Proteins; orthologues of the Gtr/Rag family GTPases, involved in target of rapamycin complex signaling, and of the RLC7 dynein component. We could not identify golgin or SNARE (coiled-coil) or beta-propeller + alpha-solenoid orthologues, nor typical MTS domain fusions, suggesting that these either were lost from Lokiarchaeum or emerged later in eukaryotic evolution. Furthermore, our phylogenetic analyses of lokiarchaeal GTPases support a split into Ras-like and Arf-like superfamilies, with different prokaryotic antecedents, before the advent of eukaryotes. While no GTPase activating proteins or exchange factors were identified, we show that Lokiarchaeum encodes numerous roadblock domain proteins and putative longin domain proteins, confirming the latter's origin from Archaea. Altogether, our study provides new insights into the emergence and early evolution of the eukaryotic membrane-trafficking system.
  •  
14.
  • Krause, Susanne, et al. (författare)
  • The importance of biofilm formation for cultivation of a Micrarchaeon and its interactions with its Thermoplasmatales host
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Micrarchaeota is a distinctive lineage assigned to the DPANN archaea, which includes poorly characterised microorganisms with reduced genomes that likely depend on interactions with hosts for growth and survival. Here, we report the enrichment of a stable co-culture of a member of the Micrarchaeota (Ca. Micrarchaeum harzensis) together with its Thermoplasmatales host (Ca. Scheffleriplasma hospitalis), as well as the isolation of the latter. We show that symbiont-host interactions depend on biofilm formation as evidenced by growth experiments, comparative transcriptomic analyses and electron microscopy. In addition, genomic, metabolomic, extracellular polymeric substances and lipid content analyses indicate that the Micrarchaeon symbiont relies on the acquisition of metabolites from its host. Our study of the cell biology and physiology of a Micrarchaeon and its host adds to our limited knowledge of archaeal symbioses. The Micrarchaeota lineage includes poorly characterized archaea with reduced genomes that likely depend on host interactions for survival. Here, the authors report a stable co-culture of a member of the Micrarchaeota and its host, and use multi-omic and physiological analyses to shed light on this symbiosis.
  •  
15.
  •  
16.
  • Lind, Anders E., et al. (författare)
  • Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle.
  • 2018
  • Ingår i: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 12:11, s. 2655-2667
  • Tidskriftsartikel (refereegranskat)abstract
    • Endosymbiosis is a widespread phenomenon in the microbial world and can be based on diverse interactions between endosymbiont and host cell. The vast majority of the known endosymbiotic interactions involve bacteria that have invaded eukaryotic host cells. However, methanogenic archaea have been found to thrive in anaerobic, hydrogenosome-containing protists and it was suggested that this symbiosis is based on the transfer of hydrogen. Here, we used culture-independent genomics approaches to sequence the genomes of two distantly related methanogenic endosymbionts that have been acquired in two independent events by closely related anaerobic ciliate hosts Nyctotherus ovalis and Metopus contortus, respectively. The sequences obtained were then validated as originating from the ciliate endosymbionts by in situ probing experiments. Comparative analyses of these genomes and their closest free-living counterparts reveal that the genomes of both endosymbionts are in an early stage of adaptation towards endosymbiosis as evidenced by the large number of genes undergoing pseudogenization. For instance, the observed loss of genes involved in amino acid biosynthesis in both endosymbiont genomes indicates that the endosymbionts rely on their hosts for obtaining several essential nutrients. Furthermore, the endosymbionts appear to have gained significant amounts of genes of potentially secreted proteins, providing targets for future studies aiming to elucidate possible mechanisms underpinning host-interactions. Altogether, our results provide the first genomic insights into prokaryotic endosymbioses from the archaeal domain of life.
  •  
17.
  •  
18.
  • Martijn, Joran, et al. (författare)
  • Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition
  • 2020
  • Ingår i: Nature Communications. - : NATURE RESEARCH. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Halobacteria (henceforth: Haloarchaea) are predominantly aerobic halophiles that are thought to have evolved from anaerobic methanogens. This remarkable transformation most likely involved an extensive influx of bacterial genes. Whether it entailed a single massive transfer event or a gradual stream of transfers remains a matter of debate. To address this, genomes that descend from methanogen-to-halophile intermediates are necessary. Here, we present five such near-complete genomes of Marine Group IV archaea (Hikarchaeia), the closest known relatives of Haloarchaea. Their inclusion in gene tree-aware ancestral reconstructions reveals an intermediate stage that had already lost a large number of genes, including nearly all of those involved in methanogenesis and the Wood-Ljungdahl pathway. In contrast, the last Haloarchaea common ancestor gained a large number of genes and expanded its aerobic respiration and salt/UV resistance gene repertoire. Our results suggest that complex and gradual patterns of gain and loss shaped the methanogen-to-halophile transition. A study of the first genomes of the marine Hikarchaeia, the closest known relatives of Haloarchaea, is presented. Their inclusion in ancestral reconstructions unveils an intermediate stage in the evolutionary transition from ancestral anaerobic methanogens to modern day aerobic halophiles.
  •  
19.
  • Moody, Edmund R. R., et al. (författare)
  • An estimate of the deepest branches of the tree of life from ancient vertically evolving genes
  • 2022
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Core gene phylogenies provide a window into early evolution, but different gene sets and analytical methods have yielded substantially different views of the tree of life. Trees inferred from a small set of universal core genes have typically supported a long branch separating the archaeal and bacterial domains. By contrast, recent analyses of a broader set of non-ribosomal genes have suggested that Archaea may be less divergent from Bacteria, and that estimates of inter-domain distance are inflated due to accelerated evolution of ribosomal proteins along the inter-domain branch. Resolving this debate is key to determining the diversity of the archaeal and bacterial domains, the shape of the tree of life, and our understanding of the early course of cellular evolution. Here, we investigate the evolutionary history of the marker genes key to the debate. We show that estimates of a reduced Archaea-Bacteria (AB) branch length result from inter-domain gene transfers and hidden paralogy in the expanded marker gene set. By contrast, analysis of a broad range of manually curated marker gene datasets from an evenly sampled set of 700 Archaea and Bacteria reveals that current methods likely underestimate the AB branch length due to substitutional saturation and poor model fit; that the best-performing phylogenetic markers tend to support longer inter-domain branch lengths; and that the AB branch lengths of ribosomal and non-ribosomal marker genes are statistically indistinguishable. Furthermore, our phylogeny inferred from the 27 highest-ranked marker genes recovers a clade of DPANN at the base of the Archaea and places the bacterial Candidate Phyla Radiation (CPR) within Bacteria as the sister group to the Chloroflexota.
  •  
20.
  • Murray, Alison E., et al. (författare)
  • Roadmap for naming uncultivated Archaea and Bacteria
  • 2020
  • Ingår i: Nature Microbiology. - : NATURE PUBLISHING GROUP. - 2058-5276. ; 5:8, s. 987-994
  • Tidskriftsartikel (refereegranskat)abstract
    • The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity. In this Consensus Statement, the authors discuss the issue of naming uncultivated prokaryotic microorganisms, which currently do not have a formal nomenclature system due to a lack of type material or cultured representatives, and propose two recommendations including the recognition of DNA sequences as type material.
  •  
21.
  • Narrowe, Adrienne B., et al. (författare)
  • Complex Evolutionary History of Translation Elongation Factor 2 and Diphthamide Biosynthesis in Archaea and Parabasalids
  • 2018
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 10:9, s. 2380-2393
  • Tidskriftsartikel (refereegranskat)abstract
    • Diphthamide is a modified histidine residue which is uniquely present in archaeal and eukaryotic elongation factor 2 (EF-2), an essential GTPase responsible for catalyzing the coordinated translocation of tRNA and mRNA through the ribosome. In part due to the role of diphthamide in maintaining translational fidelity, it was previously assumed that diphthamide biosynthesis genes (dph) are conserved across all eukaryotes and archaea. Here, comparative analysis of new and existing genomes reveals that some archaea (i.e., members of the Asgard superphylum, Geoarchaea, and Korarchaeota) and eukaryotes (i.e., parabasalids) lack dph. In addition, while EF-2 was thought to exist as a single copy in archaea, many of these dph-lacking archaeal genomes encode a second EF-2 paralog missing key residues required for diphthamide modification and for normal translocase function, perhaps suggesting functional divergence linked to loss of diphthamide biosynthesis. Interestingly, some Heimdallarchaeota previously suggested to be most closely related to the eukaryotic ancestor maintain dph genes and a single gene encoding canonical EF-2. Our findings reveal that the ability to produce diphthamide, once thought to be a universal feature in archaea and eukaryotes, has been lost multiple times during evolution, and suggest that anticipated compensatory mechanisms evolved independently.
  •  
22.
  • Offre, Pierre, et al. (författare)
  • Variability of the transporter gene complement in ammonia-oxidizing archaea
  • 2014
  • Ingår i: Trends in Microbiology. - : Elsevier BV. - 0966-842X .- 1878-4380. ; 22:12, s. 665-675
  • Forskningsöversikt (refereegranskat)abstract
    • Ammonia-oxidizing archaea (AOA) are a widespread and abundant component of microbial communities in many different ecosystems. The extent of physiological differences between individual AOA is, however, unknown. Here, we compare the transporter gene complements of six AOA, from four different environments and two major clades, to assess their potential for substrate uptake and efflux. Each of the corresponding AOA genomes encode a unique set of transporters and although the composition of AOA transporter complements follows a phylogenetic pattern, few transporter families are conserved in all investigated genomes. A comparison of ammonia transporters encoded by archaeal and bacterial ammonia oxidizers highlights the variance among AOA lineages as well as their distinction from the ammonia-oxidizing bacteria, and suggests differential ecological adaptations.
  •  
23.
  • Raina, Jean-Baptiste, et al. (författare)
  • Symbiosis in the microbial world : from ecology to genome evolution
  • 2018
  • Ingår i: BIOLOGY OPEN. - : The Company of Biologists. - 2046-6390. ; 7:2
  • Forskningsöversikt (refereegranskat)abstract
    • The concept of symbiosis - defined in 1879 by de Bary as 'the living together of unlike organisms' - has a rich and convoluted history in biology. In part, because it questioned the concept of the individual, symbiosis fell largely outside mainstream science and has traditionally received less attention than other research disciplines. This is gradually changing. In nature organisms do not live in isolation but rather interact with, and are impacted by, diverse beings throughout their life histories. Symbiosis is now recognized as a central driver of evolution across the entire tree of life, including, for example, bacterial endosymbionts that provide insects with vital nutrients and the mitochondria that power our own cells. Symbioses between microbes and their multicellular hosts also underpin the ecological success of some of the most productive ecosystems on the planet, including hydrothermal vents and coral reefs. In November 2017, scientists working in fields spanning the life sciences came together at a Company of Biologists' workshop to discuss the origin, maintenance, and long-term implications of symbiosis from the complementary perspectives of cell biology, ecology, evolution and genomics, taking into account both model and non-model organisms. Here, we provide a brief synthesis of the fruitful discussions that transpired.
  •  
24.
  • Reysenbach, Anna-Louise, et al. (författare)
  • Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 117:51, s. 32627-32638
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum "DPANN," two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.
  •  
25.
  • Saw, Jimmy H., et al. (författare)
  • Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes
  • 2015
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 370:1678
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteo-bacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal 'dark matter', is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell.
  •  
26.
  • Schwank, Katrin, et al. (författare)
  • An archaeal symbiont-host association from the deep terrestrial subsurface
  • 2019
  • Ingår i: The ISME Journal. - : NATURE PUBLISHING GROUP. - 1751-7362 .- 1751-7370. ; 13:8, s. 2135-2139
  • Tidskriftsartikel (refereegranskat)abstract
    • DPANN archaea have reduced metabolic capacities and are diverse and abundant in deep aquifer ecosystems, yet little is known about their interactions with other microorganisms that reside there. Here, we provide evidence for an archaeal hostsymbiont association from a deep aquifer system at the Colorado Plateau (Utah, USA). The symbiont, Candidatus Huberiarchaeum crystalense, and its host, Ca. Altiarchaeum hamiconexum, show a highly significant co-occurrence pattern over 65 metagenome samples collected over six years. The physical association of the two organisms was confirmed with genome-informed fluorescence in situ hybridization depicting small cocci of Ca. H. crystalense attached to Ca. A. hamiconexum cells. Based on genomic information, Ca. H. crystalense potentially scavenges vitamins, sugars, nucleotides, and reduced redox-equivalents from its host and thus has a similar metabolism as Nanoarchaeum equitans. These results provide insight into host-symbiont interactions among members of two uncultivated archaeal phyla that thrive in a deep subsurface aquifer.
  •  
27.
  • Seitz, Kiley W., et al. (författare)
  • Asgard archaea capable of anaerobic hydrocarbon cycling
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Large reservoirs of natural gas in the oceanic subsurface sustain complex communities of anaerobic microbes, including archaeal lineages with potential to mediate oxidation of hydrocarbons such as methane and butane. Here we describe a previously unknown archaeal phylum, Helarchaeota, belonging to the Asgard superphylum and with the potential for hydrocarbon oxidation. We reconstruct Helarchaeota genomes from metagenomic data derived from hydrothermal deep-sea sediments in the hydrocarbon-rich Guaymas Basin. The genomes encode methyl-CoM reductase-like enzymes that are similar to those found in butane-oxidizing archaea, as well as several enzymes potentially involved in alkyl-CoA oxidation and the Wood-Ljungdahl pathway. We suggest that members of the Helarchaeota have the potential to activate and subsequently anaerobically oxidize hydrothermally generated short-chain hydrocarbons.
  •  
28.
  •  
29.
  •  
30.
  • Spang, Anja, et al. (författare)
  • Close Encounters of the Third Domain : The Emerging Genomic View of Archaeal Diversity and Evolution
  • 2013
  • Ingår i: Archaea. - : Hindawi Limited. - 1472-3646 .- 1472-3654. ; 2013, s. 202358-
  • Forskningsöversikt (refereegranskat)abstract
    • The Archaea represent the so-called Third Domain of life, which has evolved in parallel with the Bacteria and which is implicated to have played a pivotal role in the emergence of the eukaryotic domain of life. Recent progress in genomic sequencing technologies and cultivation-independent methods has started to unearth a plethora of data of novel, uncultivated archaeal lineages. Here, we review how the availability of such genomic data has revealed several important insights into the diversity, ecological relevance, metabolic capacity, and the origin and evolution of the archaeal domain of life.
  •  
31.
  • Spang, Anja, et al. (författare)
  • Complex archaea that bridge the gap between prokaryotes and eukaryotes
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 521:7551, s. 173-179
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes.
  •  
32.
  • Spang, Anja, et al. (författare)
  • Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere
  • 2022
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 14:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
  •  
33.
  • Spang, Anja, et al. (författare)
  • Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life.
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 357:6351
  • Forskningsöversikt (refereegranskat)abstract
    • About 40 years ago, Archaea were recognized as a major prokaryotic domain of life besides Bacteria. Recently, cultivation-independent sequencing methods have produced a wealth of genomic data for previously unidentified archaeal lineages, several of which appear to represent newly revealed branches in the tree of life. Analyses of some recently obtained genomes have uncovered previously unknown metabolic traits and provided insights into the evolution of archaea and their relationship to eukaryotes. On the basis of our current understanding, much archaeal diversity still defies genomic exploration. Efforts to obtain and study genomes and enrichment cultures of uncultivated microbial lineages will likely further expand our knowledge about archaeal phylogenetic and metabolic diversity and their cell biology and ecological function.
  •  
34.
  •  
35.
  • Spang, Anja, et al. (författare)
  • Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism
  • 2019
  • Ingår i: Nature Microbiology. - : NATURE PUBLISHING GROUP. - 2058-5276. ; 4:7, s. 1138-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of eukaryotes represents an unresolved puzzle in evolutionary biology. Current research suggests that eukaryotes evolved from a merger between a host of archaeal descent and an alphaproteobacterial endosymbiont. The discovery of the Asgard archaea, a proposed archaeal superphylum that includes Lokiarchaeota, Thorarchaeota, Odinarchaeota and Heimdallarchaeota suggested to comprise the closest archaeal relatives of eukaryotes, has helped to elucidate the identity of the putative archaeal host. Whereas Lokiarchaeota are assumed to employ a hydrogen-dependent metabolism, little is known about the metabolic potential of other members of the Asgard superphylum. We infer the central metabolic pathways of Asgard archaea using comparative genomics and phylogenetics to be able to refine current models for the origin of eukaryotes. Our analyses indicate that Thorarchaeota and Lokiarchaeota encode proteins necessary for carbon fixation via the Wood-Ljungdahl pathway and for obtaining reducing equivalents from organic substrates. By contrast, Heimdallarchaeum LC2 and LC3 genomes encode enzymes potentially enabling the oxidation of organic substrates using nitrate or oxygen as electron acceptors. The gene repertoire of Heimdallarchaeum AB125 and Odinarchaeum indicates that these organisms can ferment organic substrates and conserve energy by coupling ferredoxin reoxidation to respiratory proton reduction. Altogether, our genome analyses suggest that Asgard representatives are primarily organoheterotrophs with variable capacity for hydrogen consumption and production. On this basis, we propose the 'reverse flow model', an updated symbiogenetic model for the origin of eukaryotes that involves electron or hydrogen flow from an organoheterotrophic archaeal host to a bacterial symbiont.
  •  
36.
  • Spang, Anja, et al. (författare)
  • Towards a systematic understanding of differences between archaeal and bacterial diversity
  • 2019
  • Ingår i: Environmental Microbiology Reports. - : WILEY. - 1758-2229. ; 11:1, s. 9-12
  • Tidskriftsartikel (refereegranskat)abstract
    • In this crystal ball, we discuss emerging methodologies that can help reaching a synthesis on the biodiversity of Archaea and Bacteria and thereby inform a central enigma in microbiology, i.e. the fundamental split between these primary domains of life and the apparent lower diversity of the Archaea.
  •  
37.
  • Stairs, Courtney W., et al. (författare)
  • Chlamydial contribution to anaerobic metabolism during eukaryotic evolution
  • 2020
  • Ingår i: Science Advances. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2375-2548. ; 6:35
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H-2 exchange. However, there are no strong indications that modern eukaryotic H-2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H-2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales-a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H-2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H-2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism.
  •  
38.
  • Williams, Tom A., et al. (författare)
  • Integrative modeling of gene and genome evolution roots the archaeal tree of life
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 114:23, s. E4602-E4611
  • Tidskriftsartikel (refereegranskat)abstract
    • A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum, which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO2 to acetate via the Wood-Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer.
  •  
39.
  • Zaremba-Niedzwiedzka, Katarzyna, et al. (författare)
  • Asgard archaea illuminate the origin of eukaryotic cellular complexity
  • 2017
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 541:7637, s. 353-
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-39 av 39
Typ av publikation
tidskriftsartikel (30)
forskningsöversikt (8)
annan publikation (1)
Typ av innehåll
refereegranskat (33)
övrigt vetenskapligt/konstnärligt (5)
populärvet., debatt m.m. (1)
Författare/redaktör
Spang, Anja (39)
Ettema, Thijs J. G. (23)
Stairs, Courtney W (8)
Zaremba-Niedzwiedzka ... (6)
Lind, Anders E. (5)
Baker, Brett J. (4)
visa fler...
Banfield, Jillian F. (3)
Homa, Felix (3)
Guy, Lionel, PhD, Do ... (3)
Saw, Jimmy H. (3)
Bäckström, Disa (3)
Dharamshi, Jennah (3)
Jorgensen, Steffen L ... (3)
Koonin, Eugene, V (2)
Ettema, Thijs JG (2)
Embley, T. Martin (2)
Juzokaite, Lina (2)
Probst, Alexander J. (2)
Hugenholtz, Philip (2)
Yutin, Natalya (2)
Jørgensen, Steffen L ... (2)
Wolf, Yuri I. (2)
de Ronde, Cornel E. ... (1)
Land, Henrik (1)
Vandamme, Peter (1)
Lane, Christopher E. (1)
Pedros-Alio, Carlos (1)
Foster, Peter G. (1)
Berggren, Gustav (1)
Wagner, Michael (1)
Teske, Andreas P. (1)
Raulin, F. (1)
Westall, F. (1)
Armengaud, Jean (1)
Whitman, William B. (1)
Archibald, John M. (1)
Hentschel, Ute (1)
Bornemann, Till L., ... (1)
Boussau, Bastien (1)
Podar, Mircea (1)
Dodsworth, Jeremy A. (1)
Konstantinidis, Kons ... (1)
Eisen, Jonathan A. (1)
Rinke, Christian (1)
Parks, Donovan H. (1)
Kjeldsen, Kasper U. (1)
Perry, George H. (1)
Tiedje, James M. (1)
Bode, Helge B. (1)
Cabotaje, Princess R ... (1)
visa färre...
Lärosäte
Uppsala universitet (38)
Lunds universitet (2)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (39)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (37)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy