SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Speier S) "

Sökning: WFRF:(Speier S)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bader, Erik, et al. (författare)
  • Identification of proliferative and mature beta-cells in the islets of Langerhans
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 535:7612, s. 430-
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of beta-cells. Pancreatic beta-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential(1-5); understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene(6), acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature beta-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs(7-9). We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger beta-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for beta-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional beta-cell heterogeneity and induce beta-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional beta-cell mass in diabetic patients.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Rodriguez-Diaz, R, et al. (författare)
  • Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 109:52, s. 21456-21461
  • Tidskriftsartikel (refereegranskat)abstract
    • The autonomic nervous system is thought to modulate blood glucose homeostasis by regulating endocrine cell activity in the pancreatic islets of Langerhans. The role of islet innervation, however, has remained elusive because the direct effects of autonomic nervous input on islet cell physiology cannot be studied in the pancreas. Here, we used an in vivo model to study the role of islet nervous input in glucose homeostasis. We transplanted islets into the anterior chamber of the eye and found that islet grafts became densely innervated by the rich parasympathetic and sympathetic nervous supply of the iris. Parasympathetic innervation was imaged intravitally by using transgenic mice expressing GFP in cholinergic axons. To manipulate selectively the islet nervous input, we increased the ambient illumination to increase the parasympathetic input to the islet grafts via the pupillary light reflex. This reduced fasting glycemia and improved glucose tolerance. These effects could be blocked by topical application of the muscarinic antagonist atropine to the eye, indicating that local cholinergic innervation had a direct effect on islet function in vivo. By using this approach, we found that parasympathetic innervation influences islet function in C57BL/6 mice but not in 129X1 mice, which reflected differences in innervation densities and may explain major strain differences in glucose homeostasis. This study directly demonstrates that autonomic axons innervating the islet modulate glucose homeostasis.
  •  
6.
  • Speier, S, et al. (författare)
  • Cx36-mediated coupling reduces beta-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:4, s. 1078-1086
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the effect of gap junctional coupling on the excitability of β-cells in slices of pancreas, which provide a normal environment for islet cells. The electrophysiological properties of β-cells from mice (C57Bl/6 background) lacking the gap junction protein connexin36 (Cx36−/−) were compared with heterozygous (Cx36+/−) and wild-type littermates (Cx36+/+) and with frequently used wild-type NMRI mice. Most electrophysiological characteristics of β-cells were found to be unchanged after the knockout of Cx36, except the density of Ca2+ channels, which was increased in uncoupled cells. With closed ATP-sensitive K+ (KATP) channels, the electrically coupled β-cells of Cx36+/+ and Cx36+/− mice were hyperpolarized by the membrane potential of adjacent, inactive cells. Additionally, the hyperpolarization of one β-cell could attenuate or even stop the electrical activity of nearby coupled cells. In contrast, β-cells of Cx36−/− littermates with blocked KATP channels rapidly depolarized and exhibited a continuous electrical activity. Absence of electrical coupling modified the electrophysiological properties of β-cells consistent with the reported increase in basal insulin release and altered the switch on/off response of β-cells during an acute drop of the glucose concentration. Our data indicate an important role for Cx36-gap junctions in modulating stimulation threshold and kinetics of insulin release.
  •  
7.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy