SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spillmann Dorothe) "

Sökning: WFRF:(Spillmann Dorothe)

  • Resultat 1-50 av 98
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abramsson, Alexandra, 1973, et al. (författare)
  • Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development
  • 2007
  • Ingår i: GENES & DEVELOPMENT. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 21:3, s. 316-331
  • Tidskriftsartikel (refereegranskat)abstract
    • During vascular development, endothelial platelet-derived growth factor B (PDGF-B) is critical for pericyte recruitment. Deletion of the conserved C-terminal heparin-binding motif impairs PDGF-BB retention and pericyte recruitment in vivo, suggesting a potential role for heparan sulfate (HS) in PDGF-BB function during vascular development. We studied the participation of HS chains in pericyte recruitment using two mouse models with altered HS biosynthesis. Reduction of N-sulfation due to deficiency in N-deacetylase/N-sulfotransferase-1 attenuated PDGF-BB binding in vitro, and led to pericyte detachment and delayed pericyte migration in vivo. Reduced N-sulfation also impaired PDGF-BB signaling and directed cell migration, but not proliferation. In contrast, HS from glucuronyl C5-epimerase mutants, which is extensively N- and 6-O-sulfated, but lacks 2-O-sulfated L-iduronic acid residues, retained PDGF-BB in vitro, and pericyte recruitment in vivo was only transiently delayed. These observations were supported by in vitro characterization of the structural features in HS important for PDGF-BB binding. We conclude that pericyte recruitment requires HS with sufficiently extended and appropriately spaced N-sulfated domains to retain PDGF-BB and activate PDGF receptor β (PDGFRβ) signaling, whereas the detailed sequence of monosaccharide and sulfate residues does not appear to be important for this interaction.
  •  
2.
  •  
3.
  • Barragan, Antonio, et al. (författare)
  • Erythrocyte Glycans as Plasmodium falciparum Rosetting Receptors : Molecular Background of Strain Specific Rosette Disruption by Glycosaminoglycans and Sulfated Glycoconjugates
  • 1999
  • Ingår i: Experimental parasitology. - : Elsevier BV. - 0014-4894 .- 1090-2449. ; 91:2, s. 133-143
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, is a virulent parasite phenotype associated with the occurrence of severe malaria, e.g., cerebral malaria. Compounds with specific anti-rosetting activity are potential therapeutic agents. Glycosaminoglycans and sulfated glycoconjugates were found to disrupt rosettes in a strain- and isolate-specific manner. Rosette disruption was strongly connected to the presence of N-sulfate groups in heparin/heparan sulfate as demonstrated by modified heparin preparations. This finding was corroborated by the disruption of rosettes with mono- and disaccharides derived from heparin/heparan sulfate that contained N-sulfated glucosamine. Furthermore, heparinase III treatment of erythrocyte cultures infected by FCR3S1 (and to some extent TM 284) P. falciparum strains abolished rosetting. Heparinase III treatment of the uninfected erythrocytes prior to mixing with the infected culture impeded formation of rosettes, indicating that the rosetting receptors at least partially are of glycosaminoglycan nature.
  •  
4.
  • Barragan, A, et al. (författare)
  • Plasmodium falciparum: molecular background to strain-specific rosettedisruption by glycosaminoglycans and sulfated glycoconjugates
  • 1999
  • Ingår i: Experimental parasitology. - : Elsevier BV. - 0014-4894 .- 1090-2449. ; 91:2, s. 133-143
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, is a virulent parasite phenotype associated with the occurrence of severe malaria, e.g., cerebral malaria. Compounds with specific anti-rosetting activity are potential therapeutic agents. Glycosaminoglycans and sulfated glycoconjugates were found to disrupt rosettes in a strain- and isolate-specific manner. Rosette disruption was strongly connected to the presence of N-sulfate groups in heparin/heparan sulfate as demonstrated by modified heparin preparations. This finding was corroborated by the disruption of rosettes with mono- and disaccharides derived from heparin/heparan sulfate that contained N-sulfated glucosamine. Furthermore, heparinase III treatment of erythrocyte cultures infected by FCR3S1 (and to some extent TM 284) P. falciparum strains abolished rosetting. Heparinase III treatment of the uninfected erythrocytes prior to mixing with the infected culture impeded formation of rosettes, indicating that the rosetting receptors at least partially are of glycosaminoglycan nature.
  •  
5.
  •  
6.
  • Barragan, A, et al. (författare)
  • The duffy-binding-like domain 1 of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a heparan sulfate ligand that requires 12 mers for binding
  • 2000
  • Ingår i: Blood. - 0006-4971 .- 1528-0020. ; 95, s. 3594-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), present on the surfaces of parasitized red blood cells (pRBC), mediates rosetting, a virulent phenotype. Here, we show that pRBC specifically bind heparan sulfate (HS) and heparin onto their surfaces and that the rosetting ligand PfEMP1 specifically adheres to heparin-Sepharose when extracted from the surfaces of radioiodinated infected RBC. An analysis of the binding properties of the different regions of PfEMP1 provides evidence that the Duffy-binding-like domain-1 (DBL-1) is the predominant ligand involved in HS and heparin binding. Soluble DBL-1 requires a minimal heparin fragment size of a 12-mer ( approximately 4 kd) for binding and is critically dependent on N-sulfation. A 12-mer is also the minimal heparin fragment that disrupts naturally formed rosettes. DBL-1 binds specifically to erythrocytes and also to HS from endothelial cells and human aorta but not to chondroitin sulfate A, suggesting that different PfEMP1s mediate adhesion to distinct glycosaminoglycans in individual malaria parasites. Present data suggest that HS on endothelial cells may also be involved in the sequestration of pRBC. Elucidation of these binding mechanisms opens up new possibilities for therapeutic strategies targeting adhesive interactions of pRBC.
  •  
7.
  • Beahm, Brendan J, et al. (författare)
  • A visualizable chain-terminating inhibitor of glycosaminoglycan biosynthesis in developing zebrafish
  • 2014
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 53:13, s. 3347-3352
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAG) are proteoglycan-associated polysaccharides with essential functions in animals. They have been studied extensively by genetic manipulation of biosynthetic enzymes, but chemical tools for probing GAG function are limited. HS and CS possess a conserved xylose residue that links the polysaccharide chain to a protein backbone. Here we report that, in zebrafish embryos, the peptide-proximal xylose residue can be metabolically replaced with a chain-terminating 4-azido-4-deoxyxylose (4-XylAz) residue by administration of UDP-4-azido-4-deoxyxylose (UDP-4-XylAz). UDP-4-XylAz disrupted both HS and CS biosynthesis and caused developmental abnormalities reminiscent of GAG biosynthesis and laminin mutants. The azide substituent of protein-bound 4-XylAz allowed for rapid visualization of the organismal sites of chain termination in vivo through bioorthogonal reaction with fluorescent cyclooctyne probes. UDP-4-XylAz therefore complements genetic tools for studies of GAG function in zebrafish embryogenesis.
  •  
8.
  • Bengtsson, E, et al. (författare)
  • The amino-terminal part of PRELP binds to heparin and heparan sulfate
  • 2000
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 275:52, s. 40695-40702
  • Tidskriftsartikel (refereegranskat)abstract
    • PRELP (proline, arginine-rich end leucine-rich repeat protein) is an extracellular matrix leucine-rich repeat protein. The amino-terminal region of PRELP differs from that of other leucine-rich repeat proteins in containing a high number of proline and arginine residues. The clustered proline and basic residues are conserved in rat, bovine, and human PRELP. Although the function of PRELP is not yet known, the clustered arginine residues suggest a heparan sulfate/heparin-binding capacity. We show here that PRELP indeed binds heparin and heparan sulfate. Truncated PRELP without the amino-terminal region does not bind heparin. The dissociation constant for the interaction of PRELP with heparin was determined by an in solution binding assay and by surface plasmon resonance analysis to be in the range of 10-30 nm. A 6-mer heparin oligosaccharide was the smallest size showing binding to PRELP. The binding increased with increasing length up to an 18-mer and depended on the degree of sulfation of heparin as well as heparan sulfate. Sulfate groups at all positions were shown to be of importance for the binding. Fibroblasts bind PRELP, and this interaction is inhibited with heparin, suggesting a function for PRELP as a linker between the matrix and cell surface proteoglycans.
  •  
9.
  • Bergström, Tomas, et al. (författare)
  • Heparan sulfate and viral tropism
  • 1997
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 3:11, s. 1177-1177
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
10.
  • Borgenström, M, et al. (författare)
  • Testosterone-induced growth of S115 mouse mammary tumor cells is dependent on heparan sulfate
  • 2001
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 264:2, s. 307-314
  • Tidskriftsartikel (refereegranskat)abstract
    • The androgen-induced proliferation of S115 mouse mammary tumor cells has been suggested to involve autocrinic fibroblast growth factor signaling. Heparan sulfate proteoglycans are required for fibroblast growth factor signaling, presumably due to their ability to alter binding of fibroblast growth factors to their receptors. We have investigated the role of heparan sulfate proteoglycans in the testosterone-induced proliferation of S115 cells. We demonstrate that when the cells are treated with sodium chlorate, which inhibits the sulfation of endogenous heparan sulfate proteoglycans, cell growth becomes dependent on exogenous heparin. The shortest heparin oligosaccharides supporting cell growth were octasaccharides, whereas dodecasaccharides were almost as effective as native heparin. The N-, 2-O-, and 6-O-sulfate groups of heparin were all required for full testosterone response. Treatment of S115 cells with chlorate or testosterone did not alter the expression of fibroblast growth factor receptors 1 or 3, whereas the expression of fibroblast growth factor receptor 2 was down-regulated. We have previously shown that overexpression of syndecan-1 heparan sulfate proteoglycan renders S115 cells insensitive to testosterone and now demonstrate that this effect can be overcome by sodium chlorate treatment in combination with exogenous heparin. Our results suggest that heparin-like molecules are intimately involved in the androgen-mediated proliferation of S115 cells.
  •  
11.
  • Carlsson, Pernilla, et al. (författare)
  • Heparin/heparan sulfate biosynthesis : Processive formation of N-sulfated domains
  • 2008
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 283:29, s. 20008-20014
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfate (HS) proteoglycans influence embryonic development as well as adult physiology through interactions with various proteins, including growth factors/morphogens and their receptors. The interactions depend on HS structure, which is largely determined during biosynthesis by Golgi enzymes. A key step is the initial generation of N-sulfated domains, primary sites for further polymer modification and ultimately for functional interactions with protein ligands. Such domains, generated through action of a bifunctional GlcNAc N-deacetylase/N-sulfotransferase (NDST) on a [GlcUA-GlcNAc](n) substrate, are of variable size due to regulatory mechanisms that remain poorly understood. We have studied the action of recombinant NDSTs on the [GlcUA-GlcNAc](n) precursor in the presence and absence of the sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). In the absence of PAPS, NDST catalyzes limited and seemingly random N-deacetylation of GlcNAc residues. By contrast, access to PAPS shifts the NDST toward generation of extended N-sulfated domains that are formed through coupled N-deacetylation/N-sulfation in an apparent processive mode. Variations in N-substitution pattern could be obtained by varying PAPS concentration or by experimentally segregating the N-deacetylation and N-sulfation steps. We speculate that similar mechanisms may apply also to the regulation of HS biosynthesis in the living cell.
  •  
12.
  • Cébe-Suarez, Stéphanie, et al. (författare)
  • Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR
  • 2008
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 22:8, s. 3078-3086
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factors (VEGFs) interact with the receptor tyrosine kinases (RTKs) VEGFR-1, -2, and -3; neuropilins (NRPs); and heparan sulfate (HS) proteoglycans. VEGF RTKs signal to downstream targets upon ligand-induced tyrosine phosphorylation, while NRPs and HS act as coreceptors that lack enzymatic activity yet modulate signal output by VEGF RTKs. VEGFs exist in various isoforms with distinct receptor specificity and biological activity. Here, a series of mammalian VEGF-A splice variants and orf virus VEGF-Es, as well as chimeric and mutant VEGF variants, were characterized to determine the motifs required for binding to NRP-1 in the absence (VEGF-E) or presence (VEGF-A(165)) of an HS-binding sequence. We identified the carboxyterminal peptides RPPR and DKPRR as the NRP-1 binding motifs of VEGF-E and VEGF-A, respectively. RPPR had significantly higher affinity for NRP-1 than DKPRR. VEGFs containing an RPPR motif promoted HS-independent coreceptor complex assembly between VEGFR-2 and NRP-1, independent of whether these receptors were expressed on the same or separate cells grown in cocultures. Functional studies showed that stable coreceptor assembly by VEGF correlated with its ability to promote vessel formation in an embryoid body angiogenesis assay.
  •  
13.
  • Dasgupta, Jhimli, et al. (författare)
  • Structural Basis of Oligosaccharide Receptor Recognition by Human Papillomavirus
  • 2011
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 286:4, s. 2617-2624
  • Tidskriftsartikel (refereegranskat)abstract
    • High risk human papillomavirus types 16 (HPV16) and 18 (HPV18) can cause cervical cancer. Efficient infection by HPV16 and HPV18 pseudovirions requires interactions of particles with cell-surface receptor heparan sulfate oligosaccharide. To understand the virus-receptor interactions for HPV infection, we determined the crystal structures of HPV16 and HPV18 capsids bound to the oligosaccharide receptor fragment using oligomeric heparin. The HPV-heparin structures revealed multiple binding sites for the highly negatively charged oligosaccharide fragment on the capsid surface, which is different from previously reported virus-receptor interactions in which a single type of binding pocket is present for a particular receptor. We performed structure-guided mutagenesis to generate mutant viruses, and cell binding and infectivity assays demonstrated the functional role of viral residues involved in heparin binding. These results provide a basis for understanding virus-heparan sulfate receptor interactions critical for HPV infection and for the potential development of inhibitors against HPV infection.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Eriksson, Anna S. (författare)
  • Syndecan - Regulation and Function of its Glycosaminoglycan Chains
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The cell surface is an active area where extracellular molecules meet their receptors and affect the cellular fate by inducing for example cell proliferation and adhesion. Syndecans and integrins are two transmembrane molecules that have been suggested to fine-tune these activities, possibly in cooperation. Syndecans are proteoglycans, i.e. proteins with specific types of carbohydrate chains attached. These chains are glycosaminoglycans and either heparan sulfate (HS) or chondroitin sulfate (CS). Syndecans are known to influence cell adhesion and signaling. Integrins in turn, are important adhesion molecules that connect the extracellular matrix with the cytoskeleton, and hence can regulate cell motility. In an attempt to study how the two types of glycosaminoglycans attached to syndecan-1 can interact with integrins, a cell based model system was used and functional motility assays were performed. The results showed that HS, but not CS, on the cell surface was capable of regulating integrin-mediated cell motility.Regulation of intracellular signaling is crucial to prevent abnormal cellular behavior. In the second part of this thesis, the aim was to see how the presentation of glycosaminoglycan chains to the FGF signaling complex could affect the cellular response. When attached to the plasma membrane via syndecan-1, CS chains could support the intracellular signaling, although not promoting as strong signals as HS. When glycosaminoglycans were attached to free ectodomains of syndecan-1, both types of chains sequestered FGF2 from the receptors to the same extent, pointing towards functional overlap between CS and HS.To further study the interplay between HS and CS, their roles in the formation of pharyngeal cartilage in zebrafish were established. HS was important during chondrocyte intercalation and CS in the formation of the surrounding extracellular matrix. Further, the balance between the biosynthetic enzymes determined the ratio of HS and CS, and HS biosynthesis was prioritized over CS biosynthesis.The results presented in this thesis provide further insight into the regulation of HS biosynthesis, as well as the roles of both HS and CS on the cell surface. It is evident, that in certain situations there is a strict requirement for a certain HS structure, albeit in other situations there is a functional overlap between HS and CS.
  •  
21.
  • Eriksson, Anna S., et al. (författare)
  • The Mutual Impact of Syndecan-1 and Its Glycosaminoglycan Chains-A Multivariable Puzzle
  • 2012
  • Ingår i: Journal of Histochemistry and Cytochemistry. - : SAGE Publications. - 0022-1554 .- 1551-5044. ; 60:12, s. 936-942
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteoglycans, with their core proteins and attached glycosaminoglycan chains, are recognized as important partners in many biological processes, yet often experimental analysis of their molecular action is considered for only part of these molecules: either the protein or the carbohydrate unit. In this article, we have tried to summarize, with an example of the syndecan family in general and more specifically with syndecan-1, what is known considering the mutual influence of these different components, and we follow whether the nature of the glycosaminoglycan chains matters for these effects. 
  •  
22.
  • Escobar Galvis, Martha L., et al. (författare)
  • Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate
  • 2007
  • Ingår i: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 3:12, s. 773-778
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfate proteoglycans (HSPGs) interact with numerous proteins of importance in animal development and homeostasis. Heparanase, which is expressed in normal tissues and upregulated in angiogenesis, cancer and inflammation, selectively cleaves β-glucuronidic linkages in HS chains. In a previous study, we transgenically overexpressed heparanase in mice to assess the overall effects of heparanase on HS metabolism. Metabolic labeling confirmed extensive fragmentation of HS in vivo. In the current study we found that in liver showing excessive heparanase overexpression, HSPG turnover is accelerated along with upregulation of HS N- and O-sulfation, thus yielding heparin-like chains without the domain structure typical of HS. Heparanase overexpression in other mouse organs and in human tumors correlated with increased 6-O-sulfation of HS, whereas the domain structure was conserved. The heavily sulfated HS fragments strongly promoted formation of ternary complexes with fibroblast growth factor 1 (FGF1) or FGF2 and FGF receptor 1. Heparanase thus contributes to regulation of HS biosynthesis in a way that may promote growth factor action in tumor angiogenesis and metastasis.
  •  
23.
  • Feyzi, Emadoldin, et al. (författare)
  • Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain
  • 1997
  • Ingår i: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 272:9, s. 5518-5524
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet-derived growth factors (PDGFs) are homo- or heterodimers of two related polypeptides, known as A and B chains. The A chain exists as two splice variants due to the alternative usage of exons 6 (PDGF-AL, longer) and 7 (PDGF-AS, shorter). Exon 6 encodes an 18-amino acid sequence rich in basic amino acid residues, which has been implicated as a cell retention signal. Several lines of evidence indicate that the retention is due to binding of PDGF-AL to glycosaminoglycans, especially to heparan sulfate. We have analyzed the saccharide domains of smooth muscle cell-derived heparan sulfate involved in this interaction. Furthermore, we have employed selectively modified heparin oligosaccharides to elucidate the dependence of the binding on different sulfate groups and on fragment length. The shortest PDGF-AL binding domain consists of 6-8 monosaccharide units. Studies using selectively desulfated heparins and heparin fragments suggest that N-, 2-O-, and 6-O-sulfate groups all contribute to the interaction. Structural comparison of heparan sulfate oligosaccharides separated by affinity chromatography on immobilized PDGF-AL showed that the bound pool was enriched in -IdceA(2-OSO3)-GlcNSO3(6-OSO3)- disaccharide units. Furthermore, analogous separation of a partially O-desulfated heparin decamer preparation, using a highly selective nitrocellulose filter-trapping system, yielded a PDGF-AL-bound fraction in which more than half of the disaccharide units had the structure -IdceA(2-OSO3)-GlcNSO3(6-OSO3)-. Our results suggest that the interaction between PDGF-AL and heparin/heparan sulfate is mediated via N-sulfated saccharide domains containing both 2-O- and 6-O-sulfate groups.
  •  
24.
  • Feyzi, E, et al. (författare)
  • Heparan sulfate - an information package?
  • 1997
  • Ingår i: Glycoconjugate Journal. - 0282-0080 .- 1573-4986. ; 14:Suppl., s. 14-
  • Recension (övrigt vetenskapligt/konstnärligt)
  •  
25.
  •  
26.
  • Feyzi, Emadoldin, et al. (författare)
  • Structural requirement of heparan sulfate for interaction with herpes simplex virus type 1 virions and isolated glycoprotein C
  • 1997
  • Ingår i: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 272:40, s. 24850-24857
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell surface heparan sulfates mediate primary attachment of herpes simplex virus type 1, the first step in virus invasion of the cells. Removal of the host cell heparan sulfate results in a significantly diminished susceptibility of the cell to virus infection. On the virus envelope, glycoprotein C has been identified as the major binding site for heparan sulfate in the primary attachment of the virus to host cells. Using selectively desulfated heparins and metabolically labeled host cell heparan sulfate, we have analyzed the structural requirements of heparan sulfate to provide binding sites for glycoprotein C and the whole virus. Employing glycoprotein C affinity chromatography and a virus binding assay, we subfractionated oligosaccharides derived from heparan sulfate and partially desulfated heparin into selectively bound and unbound pools. These were chemically depolymerized and analyzed at the disaccharide level. The shortest glycoprotein C-binding fragment consisted of 10-12 monosaccharide units containing at least one 2-O- and one 6-O-sulfate group that have to be localized in a sequence-specific way, based on the finding that bound and unbound HS fragments do not differ in charge or composition. The binding sequence is found within N-sulfated blocks of heparan sulfate, although several N-acetyl groups can be tolerated within the minimal binding sequence. These minimal requirements for herpes simplex virus type 1 binding to heparan sulfate are clearly distinct from other identified protein binding sites.
  •  
27.
  • Fusai, T, et al. (författare)
  • Characterisation of the chondroitin sulphate of Saimiri brain microvascular endothelial cells involved in Plasmodium falciparum cytoadhesion
  • 2000
  • Ingår i: Molecular and biochemical parasitology (Print). - 0166-6851 .- 1872-9428. ; 108:1, s. 25-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytoadhesion of Plasmodium falciparum-infected erythrocytes (IRBC) to chondroitin-4-sulphate (CSA) is inhibited by soluble CSA in vitro on Saimiri brain microvascular endothelial cells (SBEC) and in vivo in P. falciparum-infected Saimiri monkeys. We tested whether the SBEC model was appropriate for studying CSA-binding IRBC using four cell lines. All SBEC expressed a chondroitin sulphate (CS), with a composition of CSA. The mean sizes of these CSA were 20.5, 22, 23, 32.5 and 36 kDa for SBEC 3A and C2, CHO, SBEC 1D and 17, respectively. We found that cytoadhesion of the Palo-Alto (FUP)1 CSA-binding phenotype, selected by panning on SBEC 17, was specifically inhibited in a dose-dependent manner by all the purified CSA. The extent of inhibition depended on the cellular origin of the tested CSA. SBEC 17 CSA was 33 times more efficient than CHO-CSA and 21 times more efficient than the 50 kDa commercial bovine trachaea CSA. Dynabeads coated with a total extract of SBEC 1D CS-proteoglycans interacted with CSA- but not with CD36- or ICAM-1-binding IRBC. These Dynabeads also interacted specifically with the PfEMP1 DBL-3 domain, on the surface of CHO transfectants, but not with the CIDR-1 domain. Thrombomodulin was involved in IRBC adhesion to all SBEC whereas CD44 was only expressed by SBEC 1D and 17. These two CSA-proteoglycans have also been detected at the surface of human endothelial cells. Thus, the two homologous models, SBEC/Saimiri sciureus, are useful and reliable tools for the evaluation of new anti-CSA adhesion treatments and anti-disease vaccines for pregnant women.
  •  
28.
  • Götte, Martin, et al. (författare)
  • Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome.
  • 2008
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 17:7, s. 996-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced activity of beta4-galactosyltransferase 7 (beta4GalT-7), an enzyme involved in synthesizing the glycosaminoglycan linkage region of proteoglycans, is associated with the progeroid form of Ehlers-Danlos syndrome (EDS). In the invertebrates Drosophila melanogaster and Caenorhabditis elegans, mutations in beta4GalT-7 affect biosynthesis of heparan sulfate (HS), a modulator of several biological processes relevant to wound repair. We have analyzed structural alterations of HS and their functional consequences in human beta4GalT-7 Arg270Cys mutant EDS and control fibroblasts. HS disaccharide analysis by reversed phase ion-pairing chromatography revealed a reduced sulfation degree of HS paralleled by altered immunostaining patterns for the phage-display anti-HS antibodies HS4E4 and RB4EA12 in beta4GalT-7 mutant fibroblasts. Real-time PCR-analysis of 44 genes involved in glycosaminoglycan biosynthesis indicated that the structural alterations in HS were not caused by differential regulation at the transcriptional level. Scratch wound closure was delayed in beta4GalT-7-deficient cells, which could be mimicked by enzymatic removal of HS in control cells. siRNA-mediated knockdown of beta4GalT-7 expression induced morphological changes in control fibroblasts which suggested altered cell-matrix interactions. Adhesion of beta4GalT-7 deficient cells to fibronectin was increased while actin stress fiber formation was impaired relative to control cells. Also collagen gel contraction was delayed in the beta4GalT-7 mutants which showed a reduced formation of pseudopodia and filopodia, less efficient penetration of the collagen gels and a diminished formation of collagen suprastructures. Our study suggests an HS-dependent basic mechanism behind the altered wound repair phenotype of beta4GalT-7-deficient EDS patients.
  •  
29.
  • Hallak, L K, et al. (författare)
  • Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection
  • 2000
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 74:22, s. 10508-10513
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycosaminoglycans (GAGs) on the surface of cultured cells are important in the first step of efficient respiratory syncytial virus (RSV) infection. We evaluated the importance of sulfation, the major biosynthetic modification of GAGs, using an improved recombinant green fluorescent protein-expressing RSV (rgRSV) to assay infection. Pretreatment of HEp-2 cells with 50 mM sodium chlorate, a selective inhibitor of sulfation, for 48 h prior to inoculation reduced the efficiency of rgRSV infection to 40%. Infection of a CHO mutant cell line deficient in N-sulfation was three times less efficient than infection of the parental CHO cell line, indicating that N-sulfation is important. In contrast, infection of a cell line deficient in 2-O-sulfation was as efficient as infection of the parental cell line, indicating that 2-O-sulfation is not required for RSV infection. Incubating RSV with the purified soluble heparin, the prototype GAG, before inoculation had previously been shown to neutralize its infectivity. Here we tested chemically modified heparin chains that lack their N-, C6-O-, or C2-O-sulfate groups. Only heparin chains lacking the N-sulfate group lost the ability to neutralize infection, confirming that N-sulfation, but not C6-O- or C2-O-sulfation, is important for RSV infection. Analysis of heparin fragments identified the 10-saccharide chain as the minimum size that can neutralize RSV infectivity. Taken together, these results show that, while sulfate modification is important for the ability of GAGs to mediate RSV infection, only certain sulfate groups are required. This specificity indicates that the role of cell surface GAGs in RSV infection is not based on a simple charge interaction between the virus and sulfate groups but instead involves a specific GAG structural configuration that includes N-sulfate and a minimum of 10 saccharide subunits. These elements, in addition to iduronic acid demonstrated previously (L. K. Hallak, P. L. Collins, W. Knudson, and M. E. Peeples, Virology 271:264-275, 2000), partially define cell surface molecules important for RSV infection of cultured cells.
  •  
30.
  • Hallgren, Jenny, et al. (författare)
  • Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6 : formation of active tryptase monomers in the presence of low molecular weight heparin.
  • 2001
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 276:46, s. 42774-42781
  • Tidskriftsartikel (refereegranskat)abstract
    • Mast cell tryptase is stored as an active tetramer in complex with heparin in mast cell secretory granules. Previously, we demonstrated the dependence on heparin for the activation/tetramer formation of a recombinant tryptase. Here we have investigated the structural requirements for this activation process. The ability of heparin-related saccharides to activate a recombinant murine tryptase, mouse mast cell protease-6 (mMCP-6), was strongly dependent on anionic charge density and size. The dose-response curve for heparin-induced mMCP-6 activation displayed a bell-shaped appearance, indicating that heparin acts by binding to more than one tryptase monomer simultaneously. The minimal heparin oligosaccharide required for binding to mMCP-6 was 8-10 saccharide units. Gel filtration analyses showed that such short oligosaccharides were unable to generate tryptase tetramers, but instead gave rise to active mMCP-6 monomers. The active monomers were inhibited by bovine pancreatic trypsin inhibitor, whereas the tetramers were resistant. Furthermore, monomeric (but not tetrameric) mMCP-6 degraded fibronectin. Our results suggest a model for tryptase tetramer formation that involves bridging of tryptase monomers by heparin or other highly sulfated polysaccharides of sufficient chain length. Moreover, our results raise the possibility that some of the reported activities of tryptase may be related to active tryptase monomers that may be formed according to the mechanism described here.
  •  
31.
  • Holmborn, Katarina, et al. (författare)
  • On the Roles and Regulation of Chondroitin Sulfate and Heparan Sulfate in Zebrafish Pharyngeal Cartilage Morphogenesis
  • 2012
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 287:40, s. 33905-33916
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation of the common proteoglycan linkage tetrasaccharide were analyzed along with ext2 and extl3 mutants, predicted to have defective HS polymerization. Notably, the effects on HS and CS biosynthesis in the respective mutant strains were shown to differ from what had been hypothesized. In uxs1 and b3gat3 mutant larvae, biosynthesis of CS was shown to be virtually abolished, whereas these mutants still were capable of synthesizing 50% of the HS produced in control larvae. extl3 and ext2 mutants on the other hand were shown to synthesize reduced amounts of hypersulfated HS. Further, extl3 mutants produced higher levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies in the single mutant strains, as well as in ext2;uxs1 double mutants, was conducted. A correlation between HS and CS production and phenotypes was found, such that impaired HS biosynthesis was shown to affect chondrocyte intercalation, whereas impaired CS biosynthesis inhibited formation of the extracellular matrix surrounding chondrocytes.
  •  
32.
  •  
33.
  • Jastrebova, Nadja, et al. (författare)
  • Heparan Sulfate Domain Organization and Sulfation Modulate FGF-induced Cell Signaling
  • 2010
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 285:35, s. 26842-26851
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfates (HSs) modulate various developmental and homeostatic processes by binding to protein ligands. We have evaluated the structural characteristics of porcine HS in cellular signaling induced by basic fibroblast growth factor (FGF2), using CHO745 cells devoid of endogenous glycosaminoglycans as target. Markedly enhanced stimulation of cell signaling, measured as phosphorylation of ERK1/2 and protein kinase B, was only observed with the shortest HS chains isolated from liver, whereas the longer chains from either liver or intestine essentially prolonged duration of signals induced by FGF2 in the absence of polysaccharide. Structural analysis showed that contiguous sulfated domains were most abundant in the shortest HS chains and were more heavily sulfated in HS from liver than in HS from intestine. Moreover, the shortest chains from either source entered into ternary complexes with FGF2 and FGF receptor-1c more efficiently than the corresponding longer chains. In addition to authentic HSs, decasaccharide libraries generated by chemo-enzymatic modification of heparin were probed for effect on FGF2 signaling. Only the most highly sulfated decamers, previously found most efficient in ternary complex formation (Jastrebova, N., Vanwildemeersch, M., Rapraeger, A. C., Gimenez-Gallego, G., Lindahl, U., and Spillmann, D. (2006) J. Biol. Chem. 281, 26884-26892), promoted FGF2 cellular signaling as efficiently as short HS chains from liver. Together these results suggest that the effects of HS on FGF2 signaling are determined by both the structure of the highly sulfated domains and by the organization/availability of such domains within the HS chain. These findings underpin the need for regulation of HS biosynthesis in relation to control of growth factor-induced signaling pathways.
  •  
34.
  • Jastrebova, Nadja, et al. (författare)
  • Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors
  • 2006
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 281:37, s. 26884-26892
  • Tidskriftsartikel (refereegranskat)abstract
    • Biosynthesis of heparan sulfate (HS) is strictly regulated to yield products with cell/tissue-specific composition. Interactions between HS and a variety of proteins, including growth factors and morphogens, are essential for embryonic development and for homeostasis in the adult. Fibroblast growth factors (FGFs) and their various receptors (FRs) form ternary complexes with HS, as required for receptor signaling. Libraries of HS-related, radiolabeled oligosaccharides were generated by chemo-enzymatic modification of heparin and tested for affinity to immobilized FR ectodomains in the presence of FGF1 or FGF2. Experiments were designed to enable assessment of N-sulfated 8- and 10-mers with defined numbers of iduronic acid 2-O-sulfate and glucosamine 6-O-sulfate groups. FGF1 and FGF2 were found to require similar oligosaccharides in complex formation with FR1c-3c, FGF2 affording somewhat more efficient oligosaccharide recruitment than FGF1. FR4, contrary to FR1c-3c, bound oligosaccharides at physiological ionic conditions even in the absence of FGFs, and this interaction was further promoted by FGF1 but not by FGF2. In all systems studied, the stability of FGF-oligosaccharide-FR complexes correlated with the overall level of saccharide O-sulfation rather than on the precise distribution of sulfate groups.
  •  
35.
  •  
36.
  • Jastrebova, Nadja, 1977- (författare)
  • Role of Heparan Sulfate Structure in FGF-Receptor Interactions and Signaling
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Heparan sulfate (HS) belongs to the glycosaminoglycan family of polysaccharides and is found attached to protein cores on cell surfaces and in the extracellular matrix. The HS backbone consists of alternating hexuronic acid and glucosamine units and undergoes a number of modification reactions creating HS chains with alternating highly and low modified domains, where high degree of modification correlates with high negative charge. Fibroblast growth factors (FGFs) and their receptors (FRs) both bind to HS, which affect formation of the FGF–FR complexes on the cell surfaces. Activated FRs can trigger several intracellular signaling pathways leading thereby to diverse cellular responses. Work presented in this thesis focuses on the effect of HS and its structures on FGF–FR complex formation and FGF-induced signaling. Studies with short, highly modified oligosaccharides and FGF1 and 2 combined with FR1c, 2c, 3c or 4 showed a correlation between the overall degree of modification and amount/stability of FGF–FR complexes. Our findings imply that several HS structures, differently modified but with the same negative charge density are equal in their ability to support complex formation. Co-application of oligosaccharides with FGF2 to HS-deficient cells and investigation of the thereby induced cell signaling confirmed our findings with a cell-free system. The oligosaccharide with the highest modification degree displayed the biggest impact on cell signaling, which was FGF2 concentration dependent. Studies with long HS polysaccharides with preserved high and low modified domains suggest that the proportion between these two types of domains and also the structure of the low modified domains are of importance for the FGF–HS–FR complex formation and cell activation capacity. This work illuminates several aspects in how HS structure influences the interplay between FGFs and FRs and contributes to the understanding of what factors affect a cell’s response following FGF stimulation.
  •  
37.
  • Kasza, Z., et al. (författare)
  • MicroRNA-24 Suppression of N-Deacetylase/N-Sulfotransferase-1 (NDST1) Reduces Endothelial Cell Responsiveness to Vascular Endothelial Growth Factor A (VEGFA)
  • 2013
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 288:36, s. 25956-25963
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfate (HS) proteoglycans, present at the plasma membrane of vascular endothelial cells, bind to the angiogenic growth factor VEGFA to modulate its signaling through VEGFR2. The interactions between VEGFA and proteoglycan co-receptors require sulfated domains in the HS chains. To date, it is essentially unknown how the formation of sulfated protein-binding domains in HS can be regulated by microRNAs. In the present study, we show that microRNA-24 (miR-24) targets NDST1 to reduce HS sulfation and thereby the binding affinity of HS for VEGFA. Elevated levels of miR-24 also resulted in reduced levels of VEGFR2 and blunted VEGFA signaling. Similarly, suppression of NDST1 using siRNA led to a reduction in VEGFR2 expression. Consequently, not only VEGFA binding, but also VEGFR2 protein expression is dependent on NDST1 function. Furthermore, overexpression of miR-24, or siRNA-mediated reduction of NDST1, reduced endothelial cell chemotaxis in response to VEGFA. These findings establish NDST1 as a target of miR-24 and demonstrate how such NDST1 suppression in endothelial cells results in reduced responsiveness to VEGFA.
  •  
38.
  •  
39.
  • Kiselova, Nadezda, et al. (författare)
  • An automated mass spectrometry-based screening method for analysis of sulfated glycosaminoglycans
  • 2014
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 450:1, s. 598-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycosaminoglycans (GAGs) are linear polysaccharides, consisting of repeated disaccharide units, attached to core proteins in all multicellular organisms. Chondroitin sulfate (CS) and dermatan sulfate (DS) constitute a subgroup of sulfated GAGs for which the degree of sulfation varies between species and tissues. One major goal in GAG characterization is to correlate structure to function. A common approach is to exhaustively degrade the GAG chains and thereafter determine the amount of component disaccharide units. In large-scale studies, there is a need for high-throughput screening methods since existing methods are either very time- or samples consuming. Here, we present a new strategy applying MALDI-TOF MS in positive ion mode for semi-qualitative and quantitative analysis of CS/DS derived disaccharide units. Only a few picomoles of sample are required per analysis and 10 samples can be analyzed in 25 min, which makes this approach an attractive alternative to many established assay methods. The total CS/DS concentration in 19 samples derived from Caenorhabditis elegans and mammalian tissues and cells was determined. The obtained results were well in accordance with concentrations determined by a standard liquid chromatography-based method, demonstrating the applicability of the method for samples from various biological matrices containing CS/DS of different sulfation degrees.
  •  
40.
  • Knappe, Maren, et al. (författare)
  • Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 282:38, s. 27913-27922
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient infection of cells by human papillomaviruses (HPVs) and pseudovirions requires primary interaction with cell surface proteoglycans with apparent preference for species carrying heparan sulfate (HS) side chains. To identify residues contributing to virus/cell interaction, we performed point mutational analysis of the HPV16 major capsid protein, L1, targeting surface-exposed amino acid residues. Replacement of lysine residues 278, 356, or 361 for alanine reduced cell binding and infectivity of pseudovirions. Various combinations of these amino acid exchanges further decreased cell attachment and infectivity with residual infectivity of less than 5% for the triple mutant, suggesting that these lysine residues cooperate in HS binding. Single, double, or triple exchanges for arginine did not impair infectivity, demonstrating that interaction is dependent on charge distribution rather than sequence-specific. The lysine residues are located within a pocket on the capsomere surface, which was previously proposed as the putative receptor binding site. Fab fragments of binding-neutralizing antibody H16.56E that recognize an epitope directly adjacent to lysine residues strongly reduced HS-mediated cell binding, further corroborating our findings. In contrast, mutation of basic surface residues located in the cleft between capsomeres outside this pocket did not significantly reduce interaction with HS or resulted in assembly-deficient proteins. Computer-simulated heparin docking suggested that all three lysine residues can form hydrogen bonds with 2-O-, 6-O-, and N-sulfate groups of a single HS molecule with a minimal saccharide domain length of eight monomer units. This prediction was experimentally confirmed in binding experiments using capsid protein, heparin molecules of defined length, and sulfate group modifications.
  •  
41.
  • Kreuger, Johan, et al. (författare)
  • Interactions between heparan sulfate and proteins : the concept of specificity
  • 2006
  • Ingår i: Journal of Cell Biology. - 0021-9525 .- 1540-8140. ; 174:3, s. 323-327
  • Forskningsöversikt (refereegranskat)abstract
    • Proteoglycan (PG) coreceptors carry heparan sulfate (HS) chains that mediate interactions with growth factors, morphogens, and receptors. Thus, PGs modulate fundamental processes such as cell survival, division, adhesion, migration, and differentiation. This review summarizes recent biochemical and genetic information that sheds new light on the nature of HS-protein binding. Unexpectedly, many interactions appear to depend more on the overall organization of HS domains than on their fine structure.
  •  
42.
  •  
43.
  • Kumar, Archana Vijaya, et al. (författare)
  • HS3ST2 modulates breast cancer cell invasiveness via MAP kinase- and Tcf4 (Tcf7l2)-dependent regulation of protease and cadherin expression
  • 2014
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 135:11, s. 2579-2592
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfate 3-O-sulfotransferase 2 (HS3ST2), an enzyme mediating 3-O-sulfation of heparan sulfate (HS), is silenced by hypermethylation in breast cancer. As HS has an important co-receptor function for numerous signal transduction pathways, the phenotypical changes due to HS3ST2 reexpression were investigated in vitro using high and low invasive breast cancer cell lines. Compared to controls, highly invasive HS3ST2-expressing MDA-MB-231 cells showed enhanced Matrigel invasiveness, transendothelial migration and motility. Affymetrix screening and confirmatory real-time PCR and Western blotting analysis revealed increased expression of several matrix metalloproteinases, cadherin-11, E-cadherin and CEACAM-1, while protease inhibitor and annexin A10 expression were decreased. Low invasive HS3ST2 -expressing MCF-7 cells became even less invasive, with no change in gelatinolytic MMP activity. HS3ST2 expression increased HS-dependent basal and FGF2-specific signaling through the constitutively active p44/42 MAPK pathway in MDA-MB-231 cells. Increased MAPK activation was accompanied by upregulation of beta-catenin in MDA-MB-231, and of the transcription factor Tcf4 in both cell lines. Dysregulation of Tcf4-regulated ion transporters and increased cytosolic acidification were observed in HS3ST2-expressing MDA-MB-231 cells, which is a possible underlying cause of increased chemosensitivity towards doxorubicine and paclitaxel in these cells. This study provides the first in vitro evidence of the involvement of HS3ST2 in breast cancer cell invasion and chemosensitivity.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • Kurup, Sindhulakshmi, et al. (författare)
  • Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 282:29, s. 21032-21042
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfates (HS) are linear carbohydrate chains, covalently attached to proteins, that occur on essentially all cell surfaces and in extracellular matrices. HS chains show extensive structural heterogeneity and are functionally important during embryogenesis and in homeostasis due to their interactions with various proteins. Phage display antibodies have been developed to probe HS structures, assess the availability of protein-binding sites, and monitor structural changes during development and disease. Here we have characterized two such antibodies, AO4B08 and HS4E4, previously noted for partly differential tissue staining. AO4B08 recognized both HS and heparin, and was found to interact with an ubiquitouys, N-, 2-O-, and 6-O-sulfated saccharide motif, including an internal 2-O-sulfate group. HS4E4 turned out to preferentially recognize low-sulfated HS motifs containing iduronic acid, and N-sulfated as well as N-acetylated glucosamine residues. Contrary to AO4B08, HS4E4 did not bind highly O-sulfated structures such as found in heparin.
  •  
48.
  •  
49.
  • Kurup, Sindhulakshmi, 1973- (författare)
  • Design of Oligosaccharide Libraries to Characterize Heparan Sulfate – Protein Interactions
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Heparan sulfates (HSs) are a class of anionic carbohydrate chains found at cell surfaces and in the extracellular matrix where they interact with a number of proteins. HS is characterized by extreme structural heterogeneity, and has been implicated in a number of biological phenomenon like embryogenesis, morphogen gradient formation and signalling of growth factors such as FGF, PDGF etc. Despite the characteristic structural heterogeneity, evidence from compositional studies show that the HS structure is expressed in a tightly regulated manner, implying a functional significance, which is most likely in the modulation of cell behaviour through HS-protein interactions. The lack of molecular tools has, however, hampered the understanding of HS structures with functional significance. This work therefore aims at characterizing the structural requirements on HS involved in the interaction with the anti-HS phage display antibodies HS4C3, AO4B08 and HS4E4 and a selected growth factor PDGF-BB. The characterization was done with the help of tailored oligosaccharide libraries generated from sources bearing structural resemblance to HS.The work has thus made available tools that preferentially recognize certain structural features on the HS chain and will aid in the further study of HS structure and its regulation. Evidence is also provided to support the notion that HS protein interactions can occur in multiple manners, utilizing any of the structural features on the HS chain.
  •  
50.
  • Kurup, S, et al. (författare)
  • Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment
  • 2006
  • Ingår i: Biochemical Society Transactions. - 0300-5127 .- 1470-8752. ; 34:Pt 3, s. 454-455
  • Tidskriftsartikel (refereegranskat)abstract
    • HS (heparan sulphate) plays a key role in angiogenesis, by interacting with growth factors required in the process. it has been proposed that HS controls the diffusion, and thus the availability, of platelet-derived growth factor B that is needed for pericyte recruitment around newly formed capillaries. The present paper summarizes our studies on the importance of HS structure in this regulatory process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 98
Typ av publikation
tidskriftsartikel (71)
annan publikation (13)
doktorsavhandling (7)
forskningsöversikt (3)
recension (3)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (69)
övrigt vetenskapligt/konstnärligt (29)
Författare/redaktör
Spillmann, Dorothe (94)
Lindahl, Ulf (32)
Kjellén, Lena (9)
Li, Jin-Ping (9)
van Kuppevelt, Toin ... (7)
Eriksson, Anna S (7)
visa fler...
Jastrebova, Nadja (6)
Finne, J (5)
Claesson-Welsh, Lena (5)
Kurup, Sindhulakshmi (5)
Wahlgren, Mats (5)
Kreuger, Johan (5)
Wahlgren, M (4)
Song, Tianyi (4)
Ledin, Johan (3)
Do, Anh-Tri (3)
Kusche-Gullberg, Mar ... (3)
Eriksson, Inger (3)
Dupont, Sam (3)
Barragan, A (3)
Barragan, Antonio (3)
Smeds, Emanuel (3)
Trybala, E (3)
Ryan, P. (2)
Ringvall, Maria (2)
Larsson, Erik (2)
Chen, Qijun (2)
Tamm, Christoffer (2)
Carlson, J (2)
Olsson, Anna-Karin (2)
Åbrink, Magnus (2)
Bergström, Tomas (2)
Bodevin, Sabrina (2)
Carlsson, Pernilla (2)
Presto, Jenny (2)
O’Callaghan, Paul (2)
Bergström, T. (2)
Heindryckx, Femke (2)
Le Jan, Sébastien (2)
Carlson, Johan (2)
Trybala, Edward (2)
Salmivirta, Markku (2)
Svennerholm, B (2)
Holmborn, Katarina (2)
Sapp, Martin (2)
Chen, Xiaojiang S. (2)
Seidler, Daniela G. (2)
Gottfridsson, Eva (2)
Feyzi, E (2)
Feyzi, Emadoldin (2)
visa färre...
Lärosäte
Uppsala universitet (98)
Karolinska Institutet (10)
Sveriges Lantbruksuniversitet (4)
Göteborgs universitet (3)
Umeå universitet (1)
Lunds universitet (1)
Språk
Engelska (97)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (9)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy