SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spincemaille Pascal) "

Sökning: WFRF:(Spincemaille Pascal)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deh, Kofi, et al. (författare)
  • Multicenter reproducibility of quantitative susceptibility mapping in a gadolinium phantom using MEDI+0 automatic zero referencing
  • 2019
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 0740-3194 .- 1522-2594. ; 81:2, s. 1229-1236
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To determine the reproducibility of quantitative susceptibility mapping at multiple sites on clinical and preclinical scanners (1.5 T, 3 T, 7 T, and 9.4 T) from different vendors (Siemens, GE, Philips, and Bruker) for standardization of multicenter studies. Methods: Seven phantoms distributed from the core site, each containing 5 compartments with gadolinium solutions with fixed concentrations between 0.625 mM and 10 mM. Multi-echo gradient echo scans were performed at 1.5 T, 3 T, 7 T, and 9.4 T on 12 clinical and 3 preclinical scanners. DICOM images from the scans were processed into quantitative susceptibility maps using the Laplacian boundary value (LBV) and MEDI+0 automatic uniform reference algorithm. Region of interest (ROI) analyses were performed by a physicist to determine agreement between results from all sites. Measurement reproducibility was assessed using regression, Bland-Altman plots, and the intra-class correlation coefficient (ICC). Results: Quantitative susceptibility mapping (QSM) from all scanners had similar, artifact-free visual appearance. Regression analysis showed a linear relationship between gadolinium concentrations and average QSM measurements for all phantoms (y = 350x – 0.0346, r2>0.99). The SD of measurements increased almost linearly from 32 ppb to 230 ppb as the measured susceptibility increased from 0.26 ppm to 3.56 ppm. A Bland-Altman plot showed the bias, upper, and lower limits of agreement for all comparisons were −10, −210, and 200 ppb, respectively. The ICC was 0.991 with a 95% CI (0.973, 0.99). Conclusions: QSM shows excellent multicenter reproducibility for a large range of susceptibility values encountered in cranial and extra-cranial applications on a diverse set of scanner platforms.
  •  
2.
  • Persson, Ninni, et al. (författare)
  • Age and sex related differences in subcortical brain iron concentrations among healthy adults
  • 2015
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 122, s. 385-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Age and sex can influence brain iron levels. We studied the influence of these variables on deep gray matter magnetic susceptibilities. In 183 healthy volunteers (44.7 ± 14.2 years, range 20–69, ♀ 49%), in vivo quantitative susceptibility mapping (QSM) at 1.5 T was performed to estimate brain iron accumulation in the following regions of interest (ROIs): caudate nucleus (Cd), putamen (Pt), globus pallidus (Gp), thalamus (Th), pulvinar (Pul), red nucleus (Rn), substantia nigra (Sn) and the cerebellar dentate nuclei (Dn). We gauged the influence of age and sex on magnetic susceptibility by specifying a series of structural equation models. The distributions of susceptibility varied in degree across the structures, conforming to histologic findings (Hallgren and Sourander, 1958), with the highest degree of susceptibility in the Gp and the lowest in the Th. Iron increase correlated across several ROIs, which may reflect an underlying age-related process. Advanced age was associated with a particularly strong linear rise of susceptibility in the striatum. Nonlinear age trends were found in the Rn, where they were the most pronounced, followed by the Pul and Sn, while minimal nonlinear trends were observed for the Pt, Th, and Dn. Moreover, sex related variations were observed, so that women showed lower levels of susceptibility in the Sn after accounting for age. Regional susceptibility of the Pul increased linearly with age in men but exhibited a nonlinear association with age in women with a leveling off starting from midlife. Women expected to be post menopause (+ 51 years) showed lower total magnetic susceptibility in the subcortical gray matter. The current report not only is consistent with previous reports of age related variations of brain iron, but also adds to the current knowledge by reporting age-related changes in less studied, smaller subcortical nuclei. This is the first in-vivo report to show lower total subcortical brain iron levels selectively in women from midlife, compared to men and younger women. These results encourage further assessment of sex differences in brain iron. We anticipate that age and sex are important co-factors to take into account when establishing a baseline level for differentiating pathologic neurodegeneration from healthy aging. The variations in regional susceptibility reported herein should be evaluated further using a longitudinal study design to determine within-person changes in aging.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy