SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Srinivas Vivek) "

Sökning: WFRF:(Srinivas Vivek)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Banerjee, Rahul, et al. (författare)
  • Ferritin-Like Proteins : A Conserved Core for a Myriad of Enzyme Complexes
  • 2022
  • Ingår i: Macromolecular Protein Complexes IV. - Cham : Springer. - 9783031007927 - 9783031007934 ; , s. 109-153
  • Bokkapitel (refereegranskat)abstract
    • Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
  •  
2.
  • Diamanti, Riccardo, et al. (författare)
  • Comparative structural analysis provides new insights into the function of R2-like ligand-binding oxidase
  • 2022
  • Ingår i: FEBS Letters. - : John Wiley & Sons. - 0014-5793 .- 1873-3468. ; 596:12, s. 1600-1610
  • Tidskriftsartikel (refereegranskat)abstract
    • R2-like ligand-binding oxidase (R2lox) is a ferritin-like protein that harbours a heterodinuclear manganese–iron active site. Although R2lox function is yet to be established, the enzyme binds a fatty acid ligand coordinating the metal centre and catalyses the formation of a tyrosine–valine ether cross-link in the protein scaffold upon O2 activation. Here, we characterized the ligands copurified with R2lox by mass spectrometry-based metabolomics. Moreover, we present the crystal structures of two new homologs of R2lox, from Saccharopolyspora erythraea and Sulfolobus acidocaldarius, at 1.38 Å and 2.26 Å resolution, respectively, providing the highest resolution structure for R2lox, as well as new insights into putative mechanisms regulating the function of the enzyme.
  •  
3.
  • Fuller, Franklin D, et al. (författare)
  • Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
  • 2017
  • Ingår i: Nature Methods. - : Macmillan Publishers Ltd.. - 1548-7091 .- 1548-7105. ; 14, s. 443-449
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.
  •  
4.
  • Griese, Julia J., et al. (författare)
  • Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins
  • 2014
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 19:6, s. 759-774
  • Forskningsöversikt (refereegranskat)abstract
    • The ferritin superfamily contains several protein groups that share a common fold and metal coordinating ligands. The different groups utilize different dinuclear cofactors to perform a diverse set of reactions. Several groups use an oxygen-activating di-iron cluster, while others use di-manganese or heterodinuclear Mn/Fe cofactors. Given the similar primary ligand preferences of Mn and Fe as well as the similarities between the binding sites, the basis for metal specificity in these systems remains enigmatic. Recent data for the heterodinuclear cluster show that the protein scaffold per se is capable of discriminating between Mn and Fe and can assemble the Mn/Fe center in the absence of any potential assembly machineries or metal chaperones. Here we review the current understanding of the assembly of the heterodinuclear cofactor in the two different protein groups in which it has been identified, ribonucleotide reductase R2c proteins and R2-like ligand-binding oxidases. Interestingly, although the two groups form the same metal cluster they appear to employ partly different mechanisms to assemble it. In addition, it seems that both the thermodynamics of metal binding and the kinetics of oxygen activation play a role in achieving metal specificity.
  •  
5.
  • Griese, Julia J., et al. (författare)
  • Ether cross-link formation in the R2-like ligand-binding oxidase
  • 2018
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 23:6, s. 879-886
  • Tidskriftsartikel (refereegranskat)abstract
    • R2-like ligand-binding oxidases contain a dinuclear metal cofactor which can consist either of two iron ions or one manganese and one iron ion, but the heterodinuclear Mn/Fe cofactor is the preferred assembly in the presence of Mn-II and Fe-II in vitro. We have previously shown that both types of cofactor are capable of catalyzing formation of a tyrosine-valine ether cross-link in the protein scaffold. Here we demonstrate that Mn/Fe centers catalyze cross-link formation more efficiently than Fe/Fe centers, indicating that the heterodinuclear cofactor is the biologically relevant one. We further explore the chemical potential of the Mn/Fe cofactor by introducing mutations at the cross-linking valine residue. We find that cross-link formation is possible also to the tertiary beta-carbon in an isoleucine, but not to the secondary beta-carbon or tertiary gamma-carbon in a leucine, nor to the primary beta-carbon of an alanine. These results illustrate that the reactivity of the cofactor is highly specific and directed.
  •  
6.
  • John, Juliane, et al. (författare)
  • Redox-controlled reorganization and flavin strain within the ribonucleotide reductase R2b–NrdI complex monitored by serial femtosecond crystallography
  • 2022
  • Ingår i: eLIFE. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox reactions are central to biochemistry and are both controlled by and induce protein structural changes. Here, we describe structural rearrangements and crosstalk within the Bacillus cereus ribonucleotide reductase R2b–NrdI complex, a di-metal carboxylate-flavoprotein system, as part of the mechanism generating the essential catalytic free radical of the enzyme. Femtosecond crystallography at an X-ray free electron laser was utilized to obtain structures at room temperature in defined redox states without suffering photoreduction. Together with density functional theory calculations, we show that the flavin is under steric strain in the R2b–NrdI protein complex, likely tuning its redox properties to promote superoxide generation. Moreover, a binding site in close vicinity to the expected flavin O2 interaction site is observed to be controlled by the redox state of the flavin and linked to the channel proposed to funnel the produced superoxide species from NrdI to the di-manganese site in protein R2b. These specific features are coupled to further structural changes around the R2b–NrdI interaction surface. The mechanistic implications for the control of reactive oxygen species and radical generation in protein R2b are discussed.
  •  
7.
  • John, Juliane, et al. (författare)
  • Redox-controlled reorganization and flavin strain within the ribonucleotide reductase R2b–NrdI complex monitored by serial femtosecond crystallography
  • 2022
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox reactions are central to biochemistry and are both controlled by and induce protein structural changes. Here, we describe structural rearrangements and crosstalk within the Bacillus cereus ribonucleotide reductase R2b–NrdI complex, a di-metal carboxylate-flavoprotein system, as part of the mechanism generating the essential catalytic free radical of the enzyme. Femtosecond crystallography at an X-ray free electron laser was utilized to obtain structures at room temperature in defined redox states without suffering photoreduction. Together with density functional theory calculations, we show that the flavin is under steric strain in the R2b–NrdI protein complex, likely tuning its redox properties to promote superoxide generation. Moreover, a binding site in close vicinity to the expected flavin O2 interaction site is observed to be controlled by the redox state of the flavin and linked to the channel proposed to funnel the produced superoxide species from NrdI to the di-manganese site in protein R2b. These specific features are coupled to further structural changes around the R2b–NrdI interaction surface. The mechanistic implications for the control of reactive oxygen species and radical generation in protein R2b are discussed.
  •  
8.
  •  
9.
  • Kutin, Yury, et al. (författare)
  • Chemical flexibility of heterobimetallic Mn/Fe cofactors : R2lox and R2c proteins
  • 2019
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294:48, s. 18372-18386
  • Tidskriftsartikel (refereegranskat)abstract
    • A heterobimetallic Mn/Fe cofactor is present in the R2 subunit of class Ic ribonucleotide reductases (R2c) and in R2-like ligand-binding oxidases (R2lox). Although the protein-derived metal ligands are the same in both groups of proteins, the connectivity of the two metal ions and the chemistry each cofactor performs are different: in R2c, a one-electron oxidant, the Mn/Fe dimer is linked by two oxygen bridges (?-oxo/?-hydroxo), whereas in R2lox, a two-electron oxidant, it is linked by a single oxygen bridge (?-hydroxo) and a fatty acid ligand. Here, we identified a second coordination sphere residue that directs the divergent reactivity of the protein scaffold. We found that the residue that directly precedes the N-terminal carboxylate metal ligand is conserved as a glycine within the R2lox group but not in R2c. Substitution of the glycine with leucine converted the resting-state R2lox cofactor to an R2c-like cofactor, a ?-oxo/?-hydroxo?bridged Mn-III/Fe-III dimer. This species has recently been observed as an intermediate of the oxygen activation reaction in WT R2lox, indicating that it is physiologically relevant. Cofactor maturation in R2c and R2lox therefore follows the same pathway, with structural and functional divergence of the two cofactor forms following oxygen activation. We also show that the leucine-substituted variant no longer functions as a two-electron oxidant. Our results reveal that the residue preceding the N-terminal metal ligand directs the cofactor's reactivity toward one- or two-electron redox chemistry, presumably by setting the protonation state of the bridging oxygens and thereby perturbing the redox potential of the Mn ion.
  •  
10.
  • Kutin, Yuri, et al. (författare)
  • Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins
  • 2016
  • Ingår i: Journal of Inorganic Biochemistry. - : Elsevier BV. - 0162-0134 .- 1873-3344. ; 162, s. 164-177
  • Tidskriftsartikel (refereegranskat)abstract
    • A manganese/iron cofactor which performs multi-electron oxidative chemistry is found in two classes of ferritin-like proteins, the small subunit (R2) of dass Ic ribonucleotide reductase (R2c) and the R2-like ligand-binding oxidase (R2lox). It is undear how a heterodimeric Mn/Fe metallocofactor is assembled in these two related proteins as opposed to a homodimeric Fe/Fe cofactor, especially considering the structural similarity and proximity of the two metal-binding sites in both protein scaffolds and the similar first coordination sphere ligand preferences of Mn-II and Fe-II. Using EPR and Mfissbauer spectroscopies as well as X-ray anomalous dispersion, we examined metal loading and cofactor activation of both proteins in vitro (in solution). We find divergent cofactor assembly mechanisms for the two systems. In both cases, excess Mn-II promotes heterobimetallic cofactor assembly. In the absence of Fe-II, R2c cooperatively binds Mn-II at both metal sites, whereas R2lox does not readily bind Mn-II at either site. Heterometallic cofactor assembly is favored at substoichiometric Feu concentrations in R2lox. Fe-II and Mn-II likely bind to the protein in a stepwise fashion, with Feu binding to site 2 initiating cofactor assembly. In R2c, however, heterometallic assembly is presumably achieved by the displacement of Mn-II by Fe-II at site 2. The divergent metal loading mechanisms are correlated with the putative in vivo functions of R2c and R2lox, and most likely with the intracellular Mn-II/Fe-II concentrations in the host organisms from which they were isolated.
  •  
11.
  • Lebrette, Hugo, 1986-, et al. (författare)
  • Structure of a ribonucleotide reductase R2 protein radical
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 382:6666, s. 109-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerobic ribonucleotide reductases (RNRs) initiate synthesis of DNA building blocks by generating a free radical within the R2 subunit; the radical is subsequently shuttled to the catalytic R1 subunit through proton-coupled electron transfer (PCET). We present a high-resolution room temperature structure of the class Ie R2 protein radical captured by x-ray free electron laser serial femtosecond crystallography. The structure reveals conformational reorganization to shield the radical and connect it to the translocation path, with structural changes propagating to the surface where the protein interacts with the catalytic R1 subunit. Restructuring of the hydrogen bond network, including a notably short O-O interaction of 2.41 angstroms, likely tunes and gates the radical during PCET. These structural results help explain radical handling and mobilization in RNR and have general implications for radical transfer in proteins.
  •  
12.
  • Mebs, Stefan, et al. (författare)
  • Fate of oxygen species from O-2 activation at dimetal cofactors in an oxidase enzyme revealed by Fe-57 nuclear resonance X-ray scattering and quantum chemistry
  • 2019
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728 .- 1879-2650. ; 1860:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygen (O-2) activation is a central challenge in chemistry and catalyzed at prototypic dimetal cofactors in biological enzymes with diverse functions. Analysis of intermediates is required to elucidate the reaction paths of reductive O-2 cleavage. An oxidase protein from the bacterium Geobacillus kaustophilus, R2lox, was used for aerobic in-vitro reconstitution with only Fe-57(II) or Mn(II) plus Fe-57(II) ions to yield [FeFe] or [MnFe] cofactors under various oxygen and solvent isotopic conditions including O-16/18 and H/D exchange. Fe-57-specific X-ray scattering techniques were employed to collect nuclear forward scattering (NFS) and nuclear resonance vibrational spectroscopy (NRVS) data of the R2lox proteins. NFS revealed Fe/Mn(III)Fe(III) cofactor states and Mossbauer quadrupole splitting energies. Quantum chemical calculations of NRVS spectra assigned molecular structures, vibrational modes, and protonation patterns of the cofactors, featuring a terminal water (H2O) bound at iron or manganese in site 1 and a metal-bridging hydroxide (mu OH-) ligand. A procedure for quantitation and correlation of experimental and computational NRVS difference signals due to isotope labeling was developed. This approach revealed that the protons of the ligands as well as the terminal water at the R2lox cofactors exchange with the bulk solvent whereas O-18 from O-18(2) cleavage is incorporated in the hydroxide bridge. In R2lox, the two water molecules from four-electron O-2 reduction are released in a two-step reaction to the solvent. These results establish combined NRVS and QM/MM for tracking of iron-based oxygen activation in biological and chemical catalysts and clarify the reductive O-2 cleavage route in an enzyme.
  •  
13.
  • Micah, Angela E., et al. (författare)
  • Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
  • 2021
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 398:10308, s. 1317-1343
  • Forskningsöversikt (refereegranskat)abstract
    • Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US$, 2020 US$ per capita, purchasing-power parity-adjusted US$ per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached $8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or $1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, $40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that $54.8 billion in development assistance for health was disbursed in 2020. Of this, $13.7 billion was targeted toward the COVID-19 health response. $12.3 billion was newly committed and $1.4 billion was repurposed from existing health projects. $3.1 billion (22.4%) of the funds focused on country-level coordination and $2.4 billion (17.9%) was for supply chain and logistics. Only $714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to $1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
14.
  •  
15.
  • Srinivas, Vivek, et al. (författare)
  • High-Resolution XFEL Structure of the Soluble Methane Monooxygenase Hydroxylase Complex with its Regulatory Component at Ambient Temperature in Two Oxidation States
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 142:33, s. 14249-14266
  • Tidskriftsartikel (refereegranskat)abstract
    • Soluble methane monooxygenase (sMMO)is a multicomponent metalloenzyme that catalyzes the conversion of methane to methanol at ambient temperature using a nonheme, oxygen-bridged dinuclear iron cluster in the active site. Structural changes in the hydroxylase component (sMMOH) containing the diiron cluster caused by complex formation with a regulatory component (MMOB) and by iron reduction are important for the regulation of O-2 activation and substrate hydroxylation. Structural studies of metalloenzymes using traditional synchrotron-based X-ray crystallography are often complicated by partial X-ray-induced photoreduction of the metal center, thereby obviating determination of the structure of the enzyme in pure oxidation states. Here, microcrystals of the sMMOH:MMOB complex from Methylosinus trichosporium OB3b were serially exposed to X-ray free electron laser (XFEL) pulses, where the <= 35 fs duration of exposure of an individual crystal yields diffraction data before photoreduction-induced structural changes can manifest. Merging diffraction patterns obtained from thousands of crystals generates radiation damage-free, 1.95 angstrom resolution crystal structures for the fully oxidized and fully reduced states of the sMMOH:MMOB complex for the first time. The results provide new insight into the manner by which the diiron cluster and the active site environment are reorganized by the regulatory protein component in order to enhance the steps of oxygen activation and methane oxidation. This study also emphasizes the value of XFEL and serial femtosecond crystallography (SFX) methods for investigating the structures of metalloenzymes with radiation sensitive metal active sites.
  •  
16.
  • Srinivas, Vivek, et al. (författare)
  • Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens
  • 2018
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 563:7731, s. 416-420
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis(1,2). It is essential for all organisms that use DNA as their genetic material and is a current drug target(3,4). Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity(5-7). Here we describe a group of RNR proteins in Mollicutes-including Mycoplasma pathogens-that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR-some of which are developing resistance to antibiotics-are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.
  •  
17.
  • Srinivas, Vivek, 1988- (författare)
  • To metal, or not to metal : Diverse mechanisms of O2-activation and radical storage in the ferritin superfamily
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteins in the Ferritin-like superfamily are characterized by a four alpha-helical structural motif. These proteins are distributed across all three kingdoms of life and perform a wide range of functions. Several members in this protein superfamily can activate dioxygen using a di-metal active site coordinated by four carboxylate and two histidine amino acid residues. The resulting diverse set of dioxygen activated intermediates is used in nature to perform complex redox chemical reaction in cells. The R2 subunit of class I Ribonucleotide reductase and soluble Methane monooxygenase are the most well-characterized groups of proteins in this superfamily. Upon oxygen (or reduced-oxygen) activation of the di-metal site, the R2 subunit can generate a catalytic radical required for the conversion of ribonucleotides to deoxyribonucleotides, while soluble Methane monooxygenase can oxidize methane to methanol in an alternative form of carbon assimilation.The work presented in this thesis aims to better understand metal selectivity, working and the regulation of substrate specificity in various proteins of the Ferritin-like superfamily, and the development of a novel method to study radiation-sensitive intermediates. The papers discussed in this thesis present crystallographic and spectroscopic studies of several Ferritin-like superfamily proteins.In paper I, the assembly mechanisms of the heterodinuclear manganese-iron cofactor in a class Ic R2 protein and an R2-like ligand-binding oxidase are compared. Paper II presents the discovery of a novel radical-generating subunit subclass of Ribonucleotide reductase in Mollicutes, including mycoplasma pathogens, that breaks the paradigm of metal requirement for radical translocation and catalysis. This new subclass, denoted class Ie, is shown to instead use an unprecedented modified tyrosine DOPA residue in its four-helix bundle for radical translocation and storage. Paper III presents a new X-ray free-electron laser sample delivery system that combines acoustic droplet ejection with a drop-on-tape setup, allowing simultaneous multimodal X-ray diffraction and X-ray emission data collection. This setup is also shown to support photochemical and chemical activation of catalysis in crystals, allowing the study of radiation-sensitive transient reaction intermediates. We used this setup in paper IV to solve the first radiation damage-free crystallographic structures of the soluble methane monooxygenase hydroxylase and its regulatory subunit complex from Methylosinus trichosporium OB3b. The high-resolution crystal structures of the complex, in both di-ferrous and di-ferric oxidation states, illustrate the structural reorganization in the hydroxylase subunit upon binding to the regulatory subunit.These results illustrate the functional range and flexibility in the Ferritin-like protein superfamily. Including the distinctive metal discrimination in heterodinuclear metalloproteins, influencing substrate specificity in sMMO, and using a novel metal-free DOPA radical to catalyze ribonucleotide reduction in the class Ie R2 subclass. Experiments using the novel ADE-DOT setup also showed promising progress towards determining the highly sought-after structures of di-metal oxygen activated intermediates such as X and Q in subclass Ia R2 and sMMO, respectively.
  •  
18.
  • Xu, Hongyi, et al. (författare)
  • A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals
  • 2018
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 26:4, s. 667-675
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments of novel electron diffraction techniques have shown to be powerful for determination of atomic resolution structures from micronand nano-sized crystals, too small to be studied by single-crystal X-ray diffraction. In this work, the structure of a rare lysozyme polymorph is solved and refined using continuous rotation MicroED data and standard X-ray crystallographic software. Data collection was performed on a standard 200 kV transmission electron microscope (TEM) using a highly sensitive detector with a short readout time. The data collection is fast (similar to 3 min per crystal), allowing multiple datasets to be rapidly collected from a large number of crystals. We show that merging data from 33 crystals significantly improves not only the data completeness, overall I/sigma and the data redundancy, but also the quality of the final atomic model. This is extremely useful for electron beam-sensitive crystals of low symmetry or with a preferred orientation on the TEM grid.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18
Typ av publikation
tidskriftsartikel (12)
annan publikation (2)
forskningsöversikt (2)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Högbom, Martin (13)
Branca, Rui M M (3)
Rahmani, Amir Masoud (1)
Zou, Xiaodong (1)
Dalal, Koustuv (1)
McKee, Martin (1)
visa fler...
Kubin, Markus (1)
Abolhassani, Hassan (1)
Koyanagi, Ai (1)
Harapan, Harapan (1)
Lubitz, Wolfgang (1)
Sheikh, Aziz (1)
Adhikari, Tara Balla ... (1)
Hay, Simon I. (1)
Salama, Joseph S. (1)
Abbafati, Cristiana (1)
Dandona, Lalit (1)
Dandona, Rakhi (1)
Zaki, Maysaa El Saye ... (1)
Farzadfar, Farshad (1)
Foigt, Nataliya A. (1)
Hamidi, Samer (1)
Jonas, Jost B. (1)
Khader, Yousef Saleh (1)
Kumar, G. Anil (1)
Lozano, Rafael (1)
Malekzadeh, Reza (1)
Miller, Ted R. (1)
Mokdad, Ali H. (1)
Pereira, David M. (1)
Sanabria, Juan (1)
Sepanlou, Sadaf G. (1)
Tran, Bach Xuan (1)
Vasankari, Tommi Juh ... (1)
Vos, Theo (1)
Vu, Giang Thu (1)
Vu, Linh Gia (1)
Werdecker, Andrea (1)
Xu, Gelin (1)
Yonemoto, Naohiro (1)
Yu, Chuanhua (1)
Murray, Christopher ... (1)
Khubchandani, Jagdis ... (1)
Kosen, Soewarta (1)
Lim, Stephen S. (1)
Majeed, Azeem (1)
Mirrakhimov, Erkin M ... (1)
Owolabi, Mayowa O. (1)
Singh, Jasvinder A. (1)
Tabares-Seisdedos, R ... (1)
visa färre...
Lärosäte
Stockholms universitet (16)
Uppsala universitet (10)
Karolinska Institutet (4)
Umeå universitet (2)
Lunds universitet (2)
Mittuniversitetet (1)
visa fler...
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy