SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stadler Pascal 1986) "

Sökning: WFRF:(Stadler Pascal 1986)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Holmvall, Patric, 1988, et al. (författare)
  • SuperConga: An open-source framework for mesoscopic superconductivity
  • 2023
  • Ingår i: Applied Physics Reviews. - : AIP Publishing. - 1931-9401. ; 10:1
  • Forskningsöversikt (refereegranskat)abstract
    • We present SuperConga, an open-source framework for simulating equilibrium properties of unconventional and ballistic singlet superconductors, confined to two-dimensional (2D) mesoscopic grains in a perpendicular external magnetic field, at arbitrary low temperatures. It aims at being both fast and easy to use, enabling research without access to a computer cluster, and visualization in real-time with OpenGL. The core is written in C++ and CUDA, exploiting the embarrassingly parallel nature of the quasiclassical theory of superconductivity by utilizing the parallel computational power of modern graphics processing units. The framework self-consistently computes both the superconducting order-parameter and the induced vector potential and finds the current density, free energy, induced flux density, local density of states (LDOS), and the magnetic moment. A user-friendly Python frontend is provided, enabling simulation parameters to be defined via intuitive configuration files, or via the command-line interface, without requiring a deep understanding of implementation details. For example, complicated geometries can be created with relative ease. The framework ships with simple tools for analyzing and visualizing the results, including an interactive plotter for spectroscopy. An overview of the theory is presented, as well as examples showcasing the framework's capabilities and ease of use. The framework is free to download from https://gitlab.com/superconga/superconga, which also links to the extensive user manual, containing even more examples, tutorials, and guides. To demonstrate and benchmark SuperConga, we study the magnetostatics, thermodynamics, and spectroscopy of various phenomena. In particular, we study flux quantization in solenoids, vortex physics, surface Andreev bound-states, and a "phase crystal."We compare our numeric results with analytics and present experimental observables, e.g., the magnetic moment and LDOS, measurable with, for example, scanning probes, STM, and magnetometry.
  •  
2.
  • Hahn, Oliver, 1993, et al. (författare)
  • Deterministic Gaussian conversion protocols for non-Gaussian single-mode resources
  • 2022
  • Ingår i: Physical Review A. - : American Physical Society. - 2469-9934 .- 2469-9926. ; 105:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In the context of quantum technologies over continuous variables, Gaussian states and operations are typically regarded as freely available, as they are relatively easily accessible experimentally. In contrast, the generation of non-Gaussian states, as well as the implementation of non-Gaussian operations, pose significant challenges. This divide has motivated the introduction of resource theories of non-Gaussianity. As for any resource theory, it is of practical relevance to identify free conversion protocols between resources, namely, Gaussian conversion protocols between non-Gaussian states. Via systematic numerical investigations, we address the approximate conversion between experimentally relevant single-mode non-Gaussian states via arbitrary deterministic one-to-one mode Gaussian maps. First we show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit. Then we consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations. The numerical tools that we develop also allow one to devise conversions of trisqueezed into cubic-phase states beyond previously reported performances. Finally, we identify various other conversions which instead are not viable.
  •  
3.
  • He, Hans, et al. (författare)
  • Highly efficient UV detection in a metal-semiconductor-metal detector with epigraphene
  • 2022
  • Ingår i: Applied Physics Letters. - : American Institute of Physics Inc.. - 0003-6951 .- 1077-3118. ; 120:19
  • Tidskriftsartikel (refereegranskat)abstract
    • We show that epitaxial graphene on silicon carbide (epigraphene) grown at high temperatures (T >1850 °C) readily acts as material for implementing solar-blind ultraviolet (UV) detectors with outstanding performance. We present centimeter-sized epigraphene metal-semiconductor-metal (MSM) detectors with a peak external quantum efficiency of η ∼85% for wavelengths λ = 250-280 nm, corresponding to nearly 100% internal quantum efficiency when accounting for reflection losses. Zero bias operation is possible in asymmetric devices, with the responsivity to UV remaining as high as R = 134 mA/W, making this a self-powered detector. The low dark currents Io ∼50 fA translate into an estimated record high specific detectivity D = 3.5 × 1015 Jones. The performance that we demonstrate, together with material reproducibility, renders epigraphene technologically attractive to implement high-performance planar MSM devices with a low processing effort, including multi-pixel UV sensor arrays, suitable for a number of practical applications. © 2022 Author(s).
  •  
4.
  • Morley, W. T., et al. (författare)
  • Theory of double Cooper-pair tunneling and light emission mediated by a resonator
  • 2019
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 100:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Photon emission by tunneling electrons can be encouraged by locating a resonator close to the tunnel junction and applying an appropriate voltage bias. However, studies of normal metals show that the resonator also affects how the charges flow, facilitating processes in which correlated tunneling of two charges produces one photon. We develop a theory to analyze this kind of behavior in Josephson junctions by deriving an effective Hamiltonian describing processes where two Cooper pairs generate a single photon. We determine the conditions under which the transport is dominated by incoherent tunneling of two Cooper pairs, while also uncovering a regime of coherent double Cooper-pair tunneling. We show that the system can also display an unusual form of photon blockade and hence could serve as a single-photon source.
  •  
5.
  • Stadler, Pascal, 1986, et al. (författare)
  • Transport properties of vertical heterostructures under light irradiation
  • 2022
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 106:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic and transport properties of bilayer heterostructure under light irradiation are of fundamental interest to improve functionality of optoelectronic devices. We theoretically study the modification of transport properties of bilayer graphene and bilayer heterostructures under a time-periodic external light field. The bulk electronic and transport properties are studied in a Landauer-type configuration by using the nonequilibrium Green's function formalism. To illustrate the behavior of the differential conductance of a bilayer contact under light illumination, we consider tight-binding models of bilayer graphene and graphene/hexagonal boron-nitride heterostructures. The nonadiabatic driving induces sidebands of the original band structure and opening of gaps in the quasienergy spectrum. In transport properties, the gap openings are manifested in a suppression of the differential conductance. In addition to suppression, an external light field induces an enhancement of the differential conductance if photoexcited electrons tunnel into or out of a Van Hove singularity.
  •  
6.
  • Stadler, Pascal, 1986, et al. (författare)
  • Transport through vertical graphene contacts under intense laser fields
  • 2020
  • Ingår i: Physical Review Research. - 2643-1564. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We theoretically study the electronic and transport properties of two graphene layers vertically coupled by an insulating layer under the influence of a time-periodic external light field. The nonadiabatic driving induces excitations of electrons and a redistribution of the occupied states which are manifested in the opening of gaps in the quasienergy spectrum of graphene. When a voltage is applied between the top and bottom graphene layers, the photoinduced nonequilibrium occupation modifies the transport properties of the contact. We investigate the electronic and transport properties of the contact by using the nonequilibrium Green's function formalism. To illustrate the behavior of the differential conductance of the vertical contact under light illumination, we consider two cases. First, we assume that both the bottom and top layers consist of graphene and, second, we consider a finite mass term in the bottom layer. We obtain that the differential conductance is strongly suppressed due to opening of gaps in the quasienergy spectrum in graphene. Additionally, the conductance shows features corresponding to the tunneling of photoexcited electrons at energies of the Van Hove singularity for both the top and bottom layers. In the case of a finite mass term in the bottom layer, the differential conductance can be directly related to the tunneling of photoexcited electrons.
  •  
7.
  • Zheng, Yu, 1992, et al. (författare)
  • Gaussian Conversion Protocols for Cubic Phase State Generation
  • 2021
  • Ingår i: PRX Quantum. - 2691-3399. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Universal quantum computing with continuous variables requires non-Gaussian resources, in addition to a Gaussian set of operations. A known resource enabling universal quantum computation is the cubic phase state, a non-Gaussian state whose experimental implementation has so far remained elusive. In this paper, we introduce two Gaussian conversion protocols that allow for the conversion of a non-Gaussian state that has been achieved experimentally, namely the trisqueezed state [Chang et al., Phys. Rev. X 10, 011011 (2020)], to a cubic phase state. The first protocol is deterministic and it involves active (inline) squeezing, achieving large fidelities that saturate the bound for deterministic Gaussian protocols. The second protocol is probabilistic and it involves an auxiliary squeezed state, thus removing the necessity of inline squeezing but still maintaining significant success probabilities and fidelities even larger than for the deterministic case. The success of these protocols provides strong evidence for using trisqueezed states as resources for universal quantum computation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy