SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Staffa Robert) "

Sökning: WFRF:(Staffa Robert)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Polzer, Stanislav, et al. (författare)
  • A Numerical Implementation to Predict Residual Strains from the Homogeneous Stress Hypothesis with Application to Abdominal Aortic Aneurysms
  • 2013
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 0090-6964 .- 1573-9686. ; 41:7, s. 1516-1527
  • Tidskriftsartikel (refereegranskat)abstract
    • Wall stress analysis of abdominal aortic aneurysm (AAA) is a promising method of identifying AAAs at high risk of rupture. However, neglecting residual strains (RS) in the load-free configuration of patient-specific finite element analysis models is a sever limitation that strongly affects the computed wall stresses. Although several methods for including RS have been proposed, they cannot be directly applied to patient-specific AAA simulations. RS in the AAA wall are predicted through volumetric tissue growth that aims at satisfying the homogeneous stress hypothesis at mean arterial pressure load. Tissue growth is interpolated linearly across the wall thickness and aneurysm tissues are described by isotropic constitutive formulations. The total deformation is multiplicatively split into elastic and growth contributions, and a staggered schema is used to solve the field variables. The algorithm is validated qualitatively at a cylindrical artery model and then applied to patient-specific AAAs (n = 5). The induced RS state is fully three-dimensional and in qualitative agreement with experimental observations, i.e., wall strips that were excised from the load-free wall showed stress-releasing-deformations that are typically seen in laboratory experiments. Compared to RS-free simulations, the proposed algorithm reduced the von Mises stress gradient across the wall by a tenfold. Accounting for RS leads to homogenized wall stresses, which apart from reducing the peak wall stress (PWS) also shifted its location in some cases. The present study demonstrated that the homogeneous stress hypothesis can be effectively used to predict RS in the load-free configuration of the vascular wall. The proposed algorithm leads to a fast and robust prediction of RS, which is fully capable for a patient-specific AAA rupture risk assessment. Neglecting RS leads to non-realistic wall stress values that severely overestimate the PWS.
  •  
2.
  • Polzer, Stanislav, et al. (författare)
  • Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms
  • 2020
  • Ingår i: Journal of Vascular Surgery. - : MOSBY-ELSEVIER. - 0741-5214 .- 1097-6809. ; 71:2, s. 617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Several studies of biomechanical rupture risk assessment (BRRA) showed its advantage over the diameter criterion in rupture risk assessment of abdominal aortic aneurysm (AAA). However, BRRA studies have not investigated the predictability of biomechanical risk indices at different time points ahead of rupture, nor have they been performed blinded for biomechanical analysts. The objective of this study was to test the predictability of the BRRA method against diameter-based risk indices in a quasi-prospective patient cohort study.Methods: In total, 12 women and 31 men with intact AAAs at baseline have been selected retrospectively at two medical centers. Within 56 months, 19 cases ruptured, whereas 24 cases remained intact within 2 to 56 months. This outcome was kept confidential until all biomechanical activities in this study were finished. The biomechanical AAA rupture risk was calculated at baseline using high-fidelity and low-fidelity finite element method models. The capability of biomechanics-based and diameter-based risk indices to predict the known outcomes at 1 month, 3 months, 6 months, 9 months, and 12 months after baseline was validated. Besides common cohort statistics, the area under the curve (AUC) of receiver operating characteristic curves has been used to grade the different rupture risk indices.Results: Up to 9 months ahead of rupture, the receiver operating characteristic analysis of biomechanics-based risk indices showed a higher AUC than diameter-based indices. Six months ahead of rupture, the largest difference was observed with an AUC of 0.878 for the high-fidelity biomechanical risk index, 0.859 for the low-fidelity biomechanical risk index, 0.789 for the diameter, and 0.821 for the sex-adjusted diameter. In predictions beyond 9 months, none of the risk indices proved to be superior.Conclusions: High-fidelity biomechanical modeling improves the predictability of AAA rupture. Asymptomatic AAA patients with high biomechanical AAA rupture risk indices have an increased risk of rupture. Integrating biomechanics-based diagnostic indices may significantly decrease the false-positive rate in AAA treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy