SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stangl Zsofia) "

Sökning: WFRF:(Stangl Zsofia)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gundale, Michael, et al. (författare)
  • The biological controls of soil carbon accumulation following wildfire and harvest in boreal forests : a review
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:5
  • Forskningsöversikt (refereegranskat)abstract
    • Boreal forests are frequently subjected to disturbances, including wildfire and clear-cutting. While these disturbances can cause soil carbon (C) losses, the long-term accumulation dynamics of soil C stocks during subsequent stand development is controlled by biological processes related to the balance of net primary production (NPP) and outputs via heterotrophic respiration and leaching, many of which remain poorly understood. We review the biological processes suggested to influence soil C accumulation in boreal forests. Our review indicates that median C accumulation rates following wildfire and clear-cutting are similar (0.15 and 0.20 Mg ha−1 year−1, respectively), however, variation between studies is extremely high. Further, while many individual studies show linear increases in soil C stocks through time after disturbance, there are indications that C stock recovery is fastest early to mid-succession (e.g. 15–80 years) and then slows as forests mature (e.g. >100 years). We indicate that the rapid build-up of soil C in younger stands appears not only driven by higher plant production, but also by a high rate of mycorrhizal hyphal production, and mycorrhizal suppression of saprotrophs. As stands mature, the balance between reductions in plant and mycorrhizal production, increasing plant litter recalcitrance, and ectomycorrhizal decomposers and saprotrophs have been highlighted as key controls on soil C accumulation rates. While some of these controls appear well understood (e.g. temporal patterns in NPP, changes in aboveground litter quality), many others remain research frontiers. Notably, very little data exists describing and comparing successional patterns of root production, mycorrhizal functional traits, mycorrhizal-saprotroph interactions, or C outputs via heterotrophic respiration and dissolved organic C following different disturbances. We argue that these less frequently described controls require attention, as they will be key not only for understanding ecosystem C balances, but also for representing these dynamics more accurately in soil organic C and Earth system models.
  •  
2.
  • Gundale, Michael, et al. (författare)
  • The biological controls of soil carbon accumulation following wildfire and harvest in boreal forests: A review
  • 2024
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 30
  • Forskningsöversikt (refereegranskat)abstract
    • Boreal forests are frequently subjected to disturbances, including wildfire and clear-cutting. While these disturbances can cause soil carbon (C) losses, the long-term accumulation dynamics of soil C stocks during subsequent stand development is controlled by biological processes related to the balance of net primary production (NPP) and outputs via heterotrophic respiration and leaching, many of which remain poorly understood. We review the biological processes suggested to influence soil C accumulation in boreal forests. Our review indicates that median C accumulation rates following wildfire and clear-cutting are similar (0.15 and 0.20 Mg ha(-1) year(-1), respectively), however, variation between studies is extremely high. Further, while many individual studies show linear increases in soil C stocks through time after disturbance, there are indications that C stock recovery is fastest early to mid-succession (e.g. 15-80 years) and then slows as forests mature (e.g. >100 years). We indicate that the rapid build-up of soil C in younger stands appears not only driven by higher plant production, but also by a high rate of mycorrhizal hyphal production, and mycorrhizal suppression of saprotrophs. As stands mature, the balance between reductions in plant and mycorrhizal production, increasing plant litter recalcitrance, and ectomycorrhizal decomposers and saprotrophs have been highlighted as key controls on soil C accumulation rates. While some of these controls appear well understood (e.g. temporal patterns in NPP, changes in aboveground litter quality), many others remain research frontiers. Notably, very little data exists describing and comparing successional patterns of root production, mycorrhizal functional traits, mycorrhizal-saprotroph interactions, or C outputs via heterotrophic respiration and dissolved organic C following different disturbances. We argue that these less frequently described controls require attention, as they will be key not only for understanding ecosystem C balances, but also for representing these dynamics more accurately in soil organic C and Earth system models.
  •  
3.
  • Hasselquist, Niles, et al. (författare)
  • Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest
  • 2016
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 97:4, s. 1012-1022
  • Tidskriftsartikel (refereegranskat)abstract
    • The central role that ectomycorrhizal (EM) symbioses play in the structure and function of boreal forests pivots around the common assumption that carbon (C) and nitrogen (N) are exchanged at rates favorable for plant growth. However, this may not always be the case. It has been hypothesized that the benefits mycorrhizal fungi convey to their host plants strongly depends upon the availability of C and N, both of which are rapidly changing as a result of intensified human land use and climate change. Using large-scale shading and N addition treatments, we assessed the independent and interactive effects of changes in C and N supply on the transfer of N in intact EM associations with similar to 15 yr. old Scots pine trees. To assess the dynamics of N transfer in EM symbioses, we added trace amounts of highly enriched (NO3-)-N-15 label to the EM-dominated mor-layer and followed the fate of the N-15 label in tree foliage, fungal chitin on EM root tips, and EM sporocarps. Despite no change in leaf biomass, shading resulted in reduced tree C uptake, ca. 40% lower fungal biomass on EM root tips, and greater N-15 label in tree foliage compared to unshaded control plots, where more N-15 label was found in fungal biomass on EM colonized root tips. Short-term addition of N shifted the incorporation of N-15 label from EM fungi to tree foliage, despite no significant changes in below-ground tree C allocation to EM fungi. Contrary to the common assumption that C and N are exchanged at rates favorable for plant growth, our results show for the first time that under N-limited conditions greater C allocation to EM fungi in the field results in reduced, not increased, N transfer to host trees. Moreover, given the ubiquitous nature of mycorrhizal symbioses, our results stress the need to incorporate mycorrhizal dynamics into process-based ecosystem models to better predict forest C and N cycles in light of global climate change.
  •  
4.
  • Heskel, Mary A., et al. (författare)
  • Convergence in the temperature response of leaf respiration across biomes and plant functional types
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:14, s. 3832-3837
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
  •  
5.
  •  
6.
  • Kurepin, Leonid V., et al. (författare)
  • Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature
  • 2018
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 41:6, s. 1331-1345
  • Tidskriftsartikel (refereegranskat)abstract
    • High latitude forests will experience large changes in temperature and CO2 concentrations this century. We evaluated the effects of future climate conditions on 2 dominant boreal tree species, Pinus sylvestris L. and Picea abies (L.) H. Karst, exposing seedlings to 3 seasons of ambient (430 ppm) or elevated CO2 (750 ppm) and ambient temperatures, a + 4 degrees C warming or a + 8 degrees C warming. Pinus sylvestris responded positively to warming: seedlings developed a larger canopy, maintained high net CO2 assimilation rates (Anet), and acclimated dark respiration (Rdark). In contrast, carbon fluxes in Picea abies were negatively impacted by warming: maximum rates of Anet decreased, electron transport was redirected to alternative electron acceptors, and thermal acclimation of Rdark was weak. Elevated CO2 tended to exacerbate these effects in warm-grown Picea abies, and by the end of the experiment Picea abies from the +8 degrees C, high CO2 treatment produced fewer buds than they had 3 years earlier. Treatments had little effect on leaf and wood anatomy. Our results highlight that species within the same plant functional type may show opposite responses to warming and imply that Picea abies may be particularly vulnerable to warming due to low plasticity in photosynthetic and respiratory metabolism.
  •  
7.
  •  
8.
  • Law, Simon R, et al. (författare)
  • Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon storage and cycling in boreal forests—the largest terrestrial carbon store—is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree–microbe coordination of over 350 root-associated fungal species. In response to altered nutrient status, host trees redefined their relationship with the fungal community by reducing sugar efflux carriers and enhancing defense processes. This resulted in a profound restructuring of the fungal community and a collapse in functional coordination between the tree and the dominant Basidiomycete species, and an increase in functional coordination with versatile Ascomycete species. As such, there was a functional shift in community dominance from Basidiomycetes species, with important roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have melanized cell walls that are highly resistant to degradation. These changes were accompanied by prominent shifts in transcriptional coordination between over 60 predicted fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanistic insight into the complex molecular dialogue coordinating host trees and their fungal partners. The host–microbe dynamics captured by this study functionally inform how these complex and sensitive biological relationships may mediate the carbon storage potential of boreal soils under changing nutrient conditions. 
  •  
9.
  •  
10.
  • Schiestl-Aalto, Pauliina, et al. (författare)
  • Linking canopy-scale mesophyll conductance and phloem sugar δ13C using empirical and modelling approaches
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 229:6, s. 3141-3155
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust Interpreting phloem carbohydrate or xylem tissue carbon isotopic composition as measures of water-use efficiency or past tree productivity requires in-depth knowledge of the factors altering the isotopic composition within the pathway from ambient air to phloem contents and tree ring. One of least understood of these factors is mesophyll conductance (gm). We formulated a dynamic model describing the leaf photosynthetic pathway including seven alternative gm descriptions and a simple transport of sugars from foliage down the trunk. We parameterised the model for a boreal Scots pine stand and compared simulated gm responses with weather variations. We further compared the simulated δ13C of new photosynthates among the different gm descriptions and against measured phloem sugar δ13C. Simulated gm estimates of the seven descriptions varied according to weather conditions, resulting in varying estimates of phloem δ13C during cold/moist and warm/dry periods. The model succeeded in predicting a drought response and a postdrought release in phloem sugar δ13C indicating suitability of the model for inverse prediction of leaf processes from phloem isotopic composition. We suggest short-interval phloem sampling during and after extreme weather conditions to distinguish between mesophyll conductance drivers for future model development.
  •  
11.
  • Stangl, Zsofia Réka (författare)
  • Acclimation of plants to combinations of abiotic factors : connecting the lab to the field
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Increasing atmospheric CO2 and other greenhouse gasses coupled to the accelerated rate of global warming puts plants and ecosystems under the strain of a rapidly changing abiotic environment. Understanding the impacts of changing global climate is a strong focus of plant science and the establishment of more resilient crop variants is an important goal for breeding programs. Our understanding of plant responses and acclimation to abiotic conditions has improved substantially over the last decades but the combination of a complex abiotic environment and high biological diversity, both on molecular as well as on species level, leaves us still with a lot of uncertainties. The aim of this doctoral thesis was to establish a link between plant thermal responses and the carbon-nitrogen balance of plants. The work in this thesis focused on ecologically significant species of the boreal region: Picea abies, Pinus sylvestris and Betula pendula; and Betula utilis, which is one of the prominent tree species in the high altitudes of the Himalayas. The results presented demonstrate that sub-optimal temperatures combined with other abiotic factors can have additive effects that are not easily deducible from the effect of the two factors separately. Low nitrogen availability enhanced the negative effect of low temperature, while elevated CO2 enhanced plant growth under moderate increases in temperatures but under a more extreme temperature increase it exacerbated the negative effect of heat. I also show evidence that species, despite being grouped into the same functional group or inhabiting the same biome can have different thresholds to temperature and to shifts in the C/N balance of their environment and that these differences can, to some extent, be explained by their differential growth strategies. Furthermore, I demonstrate results supporting the hypothesis that the C-N fluxes between mycorrhizal fungi and tree are strongly dependent on the C and N in the environment, highlighting the significance of the tree-mycorrhiza associations in the C sequestration capacity of the boreal region. In this thesis I also present a generalised empirically based mathematical model that can describe the respiration-temperature response of plant functional types or biomes with high precision, giving a more accurate estimate of NPP when implemented in global climate models, and has the potential to incorporate the thermal acclimation of respiration, further increasing the precision of estimating carbon fluxes under future warming temperatures. My results provide novel insights into the interactive temperature-carbon-nitrogen responses of plants, taking a step towards better understanding the response of plants and forests to future climates.
  •  
12.
  • Stangl, Zsofia Réka, et al. (författare)
  • Differences in growth-economics of fast vs. slow growing grass species in response to temperature and nitrogen limitation individually, and in combination
  • 2020
  • Ingår i: BMC Ecology. - : Springer Science and Business Media LLC. - 1472-6785. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Fast growing invasive alien species are highly efficient with little investment in their tissues. They often outcompete slower growing species with severe consequences for diversity and community composition. The plant economics trait-based approach provides a theoretical framework, allowing the classification of plants with different performance characteristics. However, in multifaceted background, this approach needs testing. The evaluation and prediction of plant performance outcomes in ecologically relevant settings is among the most pressing topics to understand and predict ecosystem functioning, especially in a quickly changing environment. Temperature and nutrient availability are major components of the global environmental change and this study examines the response of growth economic traits, photosynthesis and respiration to such changes for an invasive fast-growing (Bromus hordaceus) and a slow-growing perennial (Bromus erectus) grass species. Results The fully controlled growth chamber experiment simulated temperature-and changes in nitrogen availability individually and in combination. We therefore provide maximum control and monitoring of growth responses allowing general growth trait response patterns to be tested. Under optimal nitrogen availability the slow growing B. erectus was better able to handle the lower temperatures (7 degrees C) whilst both species had problems at higher temperatures (30 degrees C). Stresses produced by a combination of heat and nutrient availability were identified to be less limiting for the slow growing species but the combination of chilling with low nutrient availability was most detrimental to both species. Conclusions For the fast-growing invader B. hordeaceus a reduction of nitrogen availability in combination with a temperature increase, leads to limited growth performance in comparison to the slow-growing perennial species B.erectus and this may explain why nutrient-rich habitats often experience more invasion than resource-poor habitats.
  •  
13.
  • Stangl, Zsofia R., et al. (författare)
  • Limits to photosynthesis: seasonal shifts in supply and demand for CO2 in Scots pine
  • 2022
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 233:3, s. 1108-1120
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal forests undergo a strong seasonal photosynthetic cycle; however, the underlying processes remain incompletely characterized. Here, we present a novel analysis of the seasonal diffusional and biochemical limits to photosynthesis (Anet) relative to temperature and light limitations in high-latitude mature Pinus sylvestris, including a high-resolution analysis of the seasonality of mesophyll conductance (gm) and its effect on the estimation of carboxylation capacity ((Formula presented.)). We used a custom-built gas-exchange system coupled to a carbon isotope analyser to obtain continuous measurements for the estimation of the relevant shoot gas-exchange parameters and quantified the biochemical and diffusional controls alongside the environmental controls over Anet. The seasonality of Anet was strongly dependent on (Formula presented.) and the diffusional limitations. Stomatal limitation was low in spring and autumn but increased to 31% in June. By contrast, mesophyll limitation was nearly constant (19%). We found that (Formula presented.) limited Anet in the spring, whereas daily temperatures and the gradual reduction of light availability limited Anet in the autumn, despite relatively high (Formula presented.). We describe for the first time the role of mesophyll conductance in connection with seasonal trends in net photosynthesis of P. sylvestris, revealing a strong coordination between gm and Anet, but not between gm and stomatal conductance.
  •  
14.
  •  
15.
  • Stangl, Zsofia Réka (författare)
  • Sunflecks in the upper canopy: dynamics of light-use efficiency in sun and shade leaves of Fagus sylvatica
  • 2022
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 235, s. 1365-1378
  • Tidskriftsartikel (refereegranskat)abstract
    • Sunflecks are transient patches of direct radiation that provide a substantial proportion of the daily irradiance to leaves in the lower canopy. In this position, faster photosynthetic induction would allow for higher sunfleck-use efficiency, as is commonly reported in the literature. Yet, when sunflecks are too few and far between, it may be more beneficial for shade leaves to prioritize efficient photosynthesis under shade. We investigated the temporal dynamics of photosynthetic induction, recovery under shade, and stomatal movement during a sunfleck, in sun and shade leaves of Fagus sylvatica from three provenances of contrasting origin. We found that shade leaves complete full induction in a shorter time than sun leaves, but that sun leaves respond faster than shade leaves due to their much larger amplitude of induction. The core-range provenance achieved faster stomatal opening in shade leaves, which may allow for better sunfleck-use efficiency in denser canopies and lower canopy positions. Our findings represent a paradigm shift for future research into light fluctuations in canopies, drawing attention to the ubiquitous importance of sunflecks for photosynthesis, not only in lower-canopy leaves where shade is prevalent, but particularly in the upper canopy where longer sunflecks are more common due to canopy openness.
  •  
16.
  • Stangl, Zsofia Réka, et al. (författare)
  • Water taken up through the bark is detected in the transpiration stream in intact upper-canopy branches
  • 2022
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 45, s. 3219-3232
  • Tidskriftsartikel (refereegranskat)abstract
    • Alternative water uptake pathways through leaves and bark complement water supply with interception, fog or dew. Bark water-uptake contributes to embolism-repair, as demonstrated in cut branches. We tested whether bark water-uptake could also contribute to supplement xylem-water for transpiration. We applied bandages injected with H-2-enriched water on intact upper-canopy branches of Pinus sylvestris and Fagus sylvatica in a boreal and in a temperate forest, in summer and winter, and monitored transpiration and online isotopic composition (delta H-2 and delta O-18) of water vapour, before sampling for analyses of delta H-2 and delta O-18 in tissue waters. Xylem, bark and leaf waters from segments downstream from the bandages were H-2-enriched whereas delta O-18 was similar to controls. Transpiration was positively correlated with H-2-enrichment. Isotopic compositions of transpiration and xylem water allowed us to calculate isotopic exchange through the bark via vapour exchange, which was negligible in comparison to estimated bark water-uptake, suggesting that water-uptake occurred via liquid phase. Results were consistent across species, forests and seasons, indicating that bark water-uptake may be more ubiquitous than previously considered. We suggest that water taken up through the bark could be incorporated into the transpiration stream, which could imply that sap-flow measurements underestimate transpiration when bark is wet.
  •  
17.
  • Vernay, Antoine, et al. (författare)
  • Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances
  • 2020
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 43, s. 2124-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • Gross primary production (GPP) is a key component of the forest carbon cycle. However, our knowledge of GPP at the stand scale remains uncertain, because estimates derived from eddy covariance (EC) rely on semi-empirical modelling and the assumptions of the EC technique are sometimes not fully met. We propose using the sap flux/isotope method as an alternative way to estimate canopy GPP, termed GPP(iso/SF), at the stand scale and at daily resolution. It is based on canopy conductance inferred from sap flux and intrinsic water-use efficiency estimated from the stable carbon isotope composition of phloem contents. The GPP(iso/SF)estimate was further corrected for seasonal variations in photosynthetic capacity and mesophyll conductance. We compared our estimate of GPP(iso/SF)to the GPP derived from PRELES, a model parameterized with EC data. The comparisons were performed in a highly instrumented, boreal Scots pine forest in northern Sweden, including a nitrogen fertilized and a reference plot. The resulting annual and daily GPP(iso/SF)estimates agreed well with PRELES, in the fertilized plot and the reference plot. We discuss the GPP(iso/SF)method as an alternative which can be widely applied without terrain restrictions, where the assumptions of EC are not met.
  •  
18.
  • Vernay, Antoine, et al. (författare)
  • Partitioning gross primary production of a boreal forest among species and strata: A multi-method approach
  • 2024
  • Ingår i: AGRICULTURAL AND FOREST METEOROLOGY. - 0168-1923 .- 1873-2240. ; 345
  • Tidskriftsartikel (refereegranskat)abstract
    • We compared three methods of estimating gross primary production (GPP) of a boreal forest dominated by spruce and pine with the goals of 1) converging on the best estimate and 2) disaggregating the GPP among the two canopy species and the understory stratum. The three methods were: 1) eddy covariance (EC), 2) a soil-vegetation-atmosphere transfer model, APES, driven by meteorological data, and 3) an ecophysiological approach (Iso/SF) based on sap flux and phloem delta C-13, where sap flux is used to estimate stomatal conductance and delta C-13 is used to estimate intrinsic water-use efficiency (WUEi). The EC and APES methods agreed rather well, which was expected because APES was developed to predict eddy covariance data. The Iso/SF method, which is based on independent data, yielded lower estimates. This was partly because it excluded understory vegetation from the GPP estimate. We also found that the measured sap flux/transpiration estimates for spruce in Iso/SF were much lower than those from APES. In contrast, the absolute values for Scots pines were very similar between the two methods, especially in the summer. In both species, the seasonal dynamics match well among all methods. This multi-method approach allowed us to detect possible problems in the spruce sap-flux measurements, but successfully upscaled pine data from ecophysiological traits to stand and ecosystem functioning.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18
Typ av publikation
tidskriftsartikel (12)
annan publikation (3)
forskningsöversikt (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Hurry, Vaughan (8)
Marshall, John (4)
Peichl, Matthias (3)
Näsholm, Torgny (3)
Ivanov, Alexander G. (3)
Huner, Norman P A (3)
visa fler...
Way, Danielle (3)
Lindahl, Björn (2)
Huntingford, Chris (2)
Wallin, Göran, 1955 (2)
Chi, Jinshu (2)
Nilsson Hegethorn, M ... (2)
Strengbom, Joachim (2)
Atkin, Owen K (2)
Tjoelker, Mark G (2)
Axelsson, Petter (2)
Gundale, Michael (2)
Buness, Vincent (2)
Tarvainen, Lasse, 19 ... (2)
Sundqvist, Maja (2)
Meir, Patrick (2)
OSullivan, Odhran S. (2)
Weerasinghe, Lasanth ... (2)
DeLuca, Thomas H. (1)
Vergara, Alexander (1)
Metcalfe, Daniel B. (1)
Grabherr, Manfred (1)
Street, Nathaniel, 1 ... (1)
Linder, Sune (1)
Reich, Peter B (1)
Wardle, David A. (1)
Hasselquist, Niles (1)
Campbell, Catherine ... (1)
Högberg, Peter (1)
Öquist, Gunnar (1)
Robinson, Kathryn M. (1)
Öquist, Gunnar, 1941 ... (1)
Metcalfe, Daniel (1)
Castro, David (1)
Schneider, Andreas N ... (1)
Inselsbacher, Erich (1)
Oren, Ram (1)
Klosterhalfen, Anne (1)
Law, Simon R. (1)
Daguerre, Yohann (1)
Marshall, John, 1956 (1)
Mäkelä, Annikki (1)
Sundh, John, 1981- (1)
Callebaut, Timon (1)
Hupperts, Stefan F. (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (14)
Umeå universitet (10)
Göteborgs universitet (3)
Uppsala universitet (1)
Stockholms universitet (1)
Lunds universitet (1)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Lantbruksvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy