SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stark Sari) "

Sökning: WFRF:(Stark Sari)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahonen, Saija H K, et al. (författare)
  • Reindeer grazing history determines the responses of subarctic soil fungal communities to warming and fertilization
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 232:2, s. 788-801
  • Tidskriftsartikel (refereegranskat)abstract
    • Composition and functioning of arctic soil fungal communities may alter rapidly due to the ongoing trends of warmer temperatures, shifts in nutrient availability and shrub encroachment. In addition, the communities may also be intrinsically shaped by heavy grazing, which may locally induce an ecosystem change that couples with increased soil temperature and nutrients and where shrub encroachment is less likely to occur than in lightly grazed conditions. We tested how four years of experimental warming and fertilization affected organic soil fungal communities in sites with decadal history of either heavy or light reindeer grazing using high-throughput sequencing of ITS2 rDNA region. Grazing history largely overrode the impacts of short-term warming and fertilization in determining the composition of fungal communities. The less diverse fungal communities under light grazing showed more pronounced responses to experimental treatments when compared to the communities under heavy grazing. Yet, ordination approaches revealed distinct treatment responses under both grazing intensities. If grazing shifts the fungal communities in Arctic ecosystems to a different and more diverse state, this shift may dictate ecosystem responses to further abiotic changes. This inclines that the intensity of grazing cannot be left out when predicting future changes in fungi-driven processes in the tundra.
  •  
2.
  • Barthelemy, Hélène, et al. (författare)
  • Effect of herbivory on the fate of added 15N-urea in a grazed Arctic tundra
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Mammalian herbivores can strongly influence nitrogen cycling and herbivore urine could be an important component of the nutrient cycle in grazed ecosystems. Despite its potential role for ecosystem productivity and soil processes, the distribution of N from urine in the different ecosystem compartments is poorly understood. This study investigates the fate of 15N enriched urea applied above the plant canopy in two tundra sites either heavily or lightly grazed by reindeer for the last 50 years. We explored the fate of the 15N in the different ecosystem N pools at 2 weeks and 1 years following tracer addition. We hypothesized that cryptogams would take up most N under light grazing, but graminoids most N under heavy grazing. The 15N-urea was rapidly incorporated in cryptogams and aboveground parts of vascular plants, while the soil microbial pool and plant roots sequestered only a marginal proportion of the labelled N applied. Hence, urine addition supports a higher primary production in tundra since most of the nutrients released from urine could be assimilated by the aboveground components with little N reaching the belowground compartments. Mosses and lichens still constituted the largest sink of the 15N-urea 1 year after tracer addition at both levels of grazing intensity demonstrating their large ability to capture and retain N  from urine. Deciduous and evergreen shrubs were just as efficient as graminoids in taking up the 15N-urea. The total recovery of the labelled urea was lower in the heavily grazed sites, suggesting that reindeer reduce the N retention in the system. Rapid incorporation of the applied 15N-urea indicates that arctic plants can take advantage of a pulse of incoming N in the form of urea, which supports a higher primary production. However, whether urine also maintains a high production of forage plants depend on plant community composition, since most urea was recovered in non-forage plants for reindeer.
  •  
3.
  • Barthelemy, Hélène, et al. (författare)
  • Grazing decreases N partitioning among coexisting plant species
  • 2017
  • Ingår i: Functional Ecology. - : Wiley. - 0269-8463 .- 1365-2435. ; 31:11, s. 2051-2060
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Herbivores play a key role in shaping ecosystem structure and functions by influencing plant and microbial community composition and nutrient cycling.2. This study investigated the long-term effects of herbivores on plant resource acquisition. We explored differences in the natural delta N-15 signatures in plant, microbial and soil N pools, and examined mycorrhizal colonization in two tundra sites that have been either lightly or heavily grazed by reindeer for more than 50 years. The study examined changes in nutrient acquisition in five common tundra plants with contrasting traits and mycorrhiza status; the mycorrhizal dwarf shrubs, Betula nana, Vaccinium myrtillus and Empetrum hermaphroditum; a mycorrhizal grass, Deschampsia flexuosa, and a non-mycorrhizal sedge, Carex bigelowii.3. There were large variations in delta N-15 among coexisting plant species in the lightly grazed sites. This variation was dramatically reduced in the heavily grazed sites. At an individual species level, delta N-15 was higher in E. hermaphroditum and lower in C. bigelowii in the heavily grazed sites. Mycorrhizal colonization in B. nana and E. hermaphroditum roots were also lower in the heavily grazed sites. The delta N-15 signatures of the total soil N pool and of the microbial N pools were higher in the heavily grazed sites.4. Since the strong delta N-15 differentiation among plant species has been interpreted as a result of plants with different mycorrhizal types using different sources of soil nitrogen, we suggest that the lower variation in delta N-15 in heavily grazed sites indicates a lower niche differentiation in nitrogen uptake among plants. Reduced mycorrhizamediated nitrogen uptake by some of the species, a shift towards a more mineral nutrition due to higher nutrient turnover, and uptake of labile nitrogen from dung and urine in the heavily grazed sites could all contribute to the changes in plant delta N-15.5. We conclude that herbivores have the potential to influence plant nutrient uptake and provide the first data suggesting that herbivores decrease nutrient partitioning on the basis of chemical N forms among plant species. Reduced niche complementarity among species is potentially important for estimates of the effects of -herbivory on plant nutrient availability and species coexistence.
  •  
4.
  • Barthelemy, Hélène, et al. (författare)
  • Short- and long-term plant and microbial uptake of 15N-labelled urea in a mesic tundra heath, West Greenland
  • 2024
  • Ingår i: Polar Biology. - : Springer Nature. - 0722-4060 .- 1432-2056. ; 47:1, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial animals are key elements in the cycling of elements in the Arctic where nutrient availability is low. Waste production by herbivores, in particular urine deposition, has a crucial role for nitrogen (N) recycling, still, it remains largely unexplored. Also, experimental evidence is biased toward short-term studies and Arctic regions under high herbivore pressure. In this study, we aimed to examine the fate of N derived from urine in a nutrient poor tundra heath in West Greenland, with historical low level of herbivory. We performed a pulse labelling with 15N-urea over the plant canopy and explored ecosystem N partition and retention in the short-term (2 weeks and 1 year) and longer-term (5 years). We found that all vascular plants, irrespective of their traits, could rapidly take up N-urea, but mosses and lichens were even more efficient. Total 15N enrichment was severely reduced for all plants 5 years after tracer addition, with the exception of cryptogams, indicating that non-vascular plants constituted a long-term sink of 15N-urea. The 15N recovery was also high in the litter suggesting high N immobilization in this layer, potentially delaying the nutrients from urine entering the soil compartment. Long-term 15N recovery in soil microbial biomass was minimal, but as much as 30% of added 15N remained in the non-microbial fraction after 5 years. Our results demonstrate that tundra plants that have evolved under low herbivory pressure are well adapted to quickly take advantage of labile urea, with urine having only a transient effect on soil nutrient availability.
  •  
5.
  • Barthelemy, Helene, et al. (författare)
  • Strong Responses of Subarctic Plant Communities to Long-Term Reindeer Feces Manipulation
  • 2015
  • Ingår i: Ecosystems (New York. Print). - : Springer. - 1432-9840 .- 1435-0629. ; 18:5, s. 740-751
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition of feces is a key mechanism by which herbivores influence soil nutrient cycling and plant production, but the knowledge about its importance for plant production and community structure is still rudimental since experimental evidence is scarce. We thus performed a 7-year long reindeer feces manipulation experiment in two tundra vegetation types with contrasting nutrient availability and analyzed effects on plant community composition and soil nutrient availability. Despite feces being fairly nutrient poor, feces manipulation had strong effect on both the nutrient-poor heath and the nutrient-rich meadow. The strongest effect was detected when feces were added at high density, with a substantial increase in total vascular plant productivity and graminoids in the two communities. Doubling natural deposition of reindeer feces enhanced primary production and the growth of deciduous shrubs in the heath. By contrast, removal of feces decreased only the production of graminoids and deciduous shrubs in the heath. Although the response to feces addition was faster in the nutrient-rich meadow, after 7 years it was more pronounced in the nutrient-poor heath. The effect of feces manipulation on soil nutrient availability was low and temporarily variable. Our study provides experimental evidence for a central role of herbivore feces in regulating primary production when herbivores are abundant enough. Deposition of feces alone does, however, not cause dramatic vegetation shifts; to drive unproductive heath to a productive grass dominated state, herbivore trampling, and grazing are probably also needed.
  •  
6.
  • Barthelemy, Hélène, et al. (författare)
  • Urine is an important nitrogen source for plants irrespective of vegetation composition in an Arctic tundra : Insights from a N-15-enriched urea tracer experiment
  • 2018
  • Ingår i: Journal of Ecology. - : Wiley-Blackwell Publishing Inc.. - 0022-0477 .- 1365-2745. ; 106:1, s. 367-378
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Mammalian herbivores can strongly influence nitrogen (N) cycling and herbivore urine could be a central component of the N cycle in grazed ecosystems. Despite its potential role for ecosystem productivity and functioning, the fate of N derived from urine has rarely been investigated in grazed ecosystems. 2. This study explored the fate of N-15-enriched urea in tundra sites that have been either lightly or intensively grazed by reindeer for more than 50years. We followed the fate of the N-15 applied to the plant canopy, at 2weeks and 1year after tracer addition, in the different ecosystem N pools. 3. N-15-urea was rapidly incorporated in cryptogams and in above-ground parts of vascular plants, while the soil microbial pool and plant roots sequestered only a marginal proportion. Furthermore, the litter layer constituted a large sink for the N-15-urea, at least in the short term, indicating a high biological activity in the litter layer and high immobilization in the first phases of organic matter decomposition. 4. Mosses and lichens still constituted the largest sink for the N-15-urea 1year after tracer addition at both levels of grazing intensity demonstrating their large ability to capture and retain N from urine. Despite large fundamental differences in their traits, deciduous and evergreen shrubs were just as efficient as graminoids in taking up the N-15-urea. The total recovery of N-15-urea was lower in the intensively grazed sites, suggesting that reindeer reduce ecosystem N retention. 5. Synthesis. The rapid incorporation of the applied N-15-urea indicates that arctic plants can take advantage of a pulse of incoming N from urine. In addition, N-15 values of all taxa in the heavily grazed sites converged towards the N-15 values for urine, bringing further evidence that urine is an important N source for plants in grazed tundra ecosystems.
  •  
7.
  • Egelkraut, Dagmar, 1989-, et al. (författare)
  • Multiple feedbacks contribute to a centennial legacy of reindeer on tundra vegetation
  • 2018
  • Ingår i: Ecosystems (New York. Print). - : Springer. - 1432-9840 .- 1435-0629. ; 21:8, s. 1545-1563
  • Tidskriftsartikel (refereegranskat)abstract
    • Historical contingency is the impact of past events, like the timing and order of species arrival, on community assembly, and can sometimes result in alternative stable states of ecological communities. Large herbivores, wild and domestic, can cause profound changes in the structure and functioning of plant communities and therefore probably influence historical contingency; however, little empirical data on the stability of such shifts or subsequent drivers of stability are available. We studied the centennial legacy of reindeer (Rangifer tarandus) pressure on arctic tundra vegetation by considering historical milking grounds (HMGs): graminoid- and forb-dominated patches amid shrub-dominated tundra, formed by historical Sami reindeer herding practices that ended approximately 100 years ago. Our results show that the core areas of all studied HMGs remained strikingly stable, being hardly invaded by surrounding shrubs. Soil nitrogen concentrations were comparable to heavily grazed areas. However, the HMGs are slowly being reinvaded by vegetative growth of shrubs at the edges, and the rate of ingrowth increased with higher mineral N availability. Furthermore, our data indicate that several biotic feedbacks contribute to the stability of the HMGs: increased nutrient turnover supporting herbaceous vegetation, strong interspecific competition preventing invasion and herbivore damage to invading shrubs. In particular, voles and lemmings appear to be important, selectively damaging shrubs in the HMGs. We concluded that HMGs provide clear evidence for historical contingency of herbivore effects in arctic ecosystems. We showed that several biotic feedbacks can contribute to subsequent vegetation stability, but their relative importance will vary in time and space.
  •  
8.
  • Myrsky, Eero, et al. (författare)
  • Higher vascular plant abundance associated with decreased ecosystem respiration after 20 years of warming in the forest–tundra ecotone
  • 2024
  • Ingår i: Functional Ecology. - : British Ecological Society. - 0269-8463 .- 1365-2435. ; 38:1, s. 219-232
  • Tidskriftsartikel (refereegranskat)abstract
    • The on-going climate warming is promoting shrub abundance in high latitudes, but the effect of this phenomenon on ecosystem functioning is expected to depend on whether deciduous or evergreen species increase in response to warming. To explore effects of long-term warming on shrubs and further on ecosystem functioning, we analysed vegetation and ecosystem CO2 exchange after 20 years of warming in the forest–tundra ecotone in subarctic Sweden. A previous study conducted 9 years earlier had found increased evergreen Empetrum nigrum ssp. hermaphroditum in the forest and increased deciduous Betula nana in the tundra. Following current understanding, we expected continued increase in shrub abundance that would be stronger in tundra than in forest. We expected warming to increase ecosystem respiration (Re) and gross primary productivity (GPP), with a greater increase in Re in tundra due to increased deciduous shrub abundance, leading to a less negative net ecosystem exchange and reduced ecosystem C sink strength. As predicted, vascular plant abundances were higher in the warmed plots with a stronger response in tundra than in forest. However, whereas B. nana had increased in abundance since the last survey, E. hermaphroditum abundance had declined due to several moth and rodent outbreaks during the past decade. In contrast to predictions, Re was significantly lower in the warmed plots irrespective of habitat, and GPP increased marginally only in the forest. The lower Re and a higher GPP under warming in the forest together led to increased net C sink. Re was negatively associated with the total vascular plant abundance. Our results highlight the importance of disturbance regimes for vegetation responses to warming. Climate warming may promote species with both a high capacity to grow under warmer conditions and a resilience towards herbivore outbreaks. Negative correlation between Re and total vascular plant abundance further indicate that the indirect impacts of increased plants on soil microclimate may become increasingly important for ecosystem CO2 exchange in the long run, which adds to the different mechanisms that link warming and CO2 fluxes in northern ecosystems. Read the free Plain Language Summary for this article on the Journal blog.
  •  
9.
  • Olofsson, Johan, 1972-, et al. (författare)
  • Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen
  • 2011
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 1, s. 220-223
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is affecting plant community composition1 and ecosystem structure, with consequences for ecosystem processes such as carbon storage2, 3, 4. Climate can affect plants directly by altering growth rates1, and indirectly by affecting predators and herbivores, which in turn influence plants5, 6, 7, 8, 9. Diseases are also known to be important for the structure and function of food webs10, 11, 12, 13, 14. However, the role of plant diseases in modulating ecosystem responses to a changing climate is poorly understood15, 16. This is partly because disease outbreaks are relatively rare and spatially variable, such that that their effects can only be captured in long-term experiments. Here we show that, although plant growth was favoured by the insulating effects of increased snow cover in experimental plots in Sweden, plant biomass decreased over the seven-year study. The decline in biomass was caused by an outbreak of a host-specific parasitic fungus, Arwidssonia empetri, which killed the majority of the shoots of the dominant plant species, Empetrum hermaphroditum, after six years of increased snow cover. After the outbreak of the disease, instantaneous measurements of gross photosynthesis and net ecosystem carbon exchange were significantly reduced at midday during the growing season. Our results show that plant diseases can alter and even reverse the effects of a changing climate on tundra carbon balance by altering plant composition.
  •  
10.
  • Olofsson, Johan, et al. (författare)
  • Effects of summer grazing by reindeer on composition of vegetation, productivity and nitrogen cycling
  • 2001
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 24:1, s. 13-24
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigated the effect of reindeer grazing on tundra heath vegetation in northern Norway. Fences. erected 30 yr ago, allowed us to compare winter grazed, lightly summer grazed and heavily summer grazed vegetation at four different sites. At two sites, graminoids dominated the heavily grazed zone completely, while ericoid dwarf shrubs had almost disappeared. In the other two areas, the increase of graminoids was almost significant. At one of the sites where graminoids dominated the heavily grazed area. we also measured plant biomass, primary production and nitrogen cycling. In this site: heavy grazing increased primary production and rate of nitrogen cycling, while moderate grazing decreased primary production. These results were inconsistent with the view that the highest productivity is found at intermediate grazing pressure. These results rather support the hypothesis that intensive grazing can promote a transition of moss-rich heath tundra into productive, graminoid-dominated steppe-like tundra vegetation. More over the results suggests that intermittent intensive reindeer grazing can enhance productivity of summer ranges.
  •  
11.
  • Rasmus, Sirpa, et al. (författare)
  • Policy documents considering biodiversity, land use, and climate in the European Arctic reveal visible, hidden, and imagined nexus approaches
  • 2024
  • Ingår i: One Earth. - : Cell Press. - 2590-3330 .- 2590-3322.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is experiencing rapid and interlinked socio-environmental changes. Therefore, governance approaches that take the complex interactions between climate change, biodiversity loss, increasing land use pressures, and local livelihoods into account are needed: nexus approaches. However, an overview of whether and to what extent Arctic policies address these nexus elements in concert has been missing. Here we analyzed a large sample of publicly available assessment reports and policy documents from the terrestrial European Arctic. Our results show that, although nexus approaches are widely adopted in Arctic policy reporting, the emphasis varies among the governance levels, and documents underestimate certain interactions: local communities and traditional livelihoods are seldom seen as actors with agency and impact. Practical implementations were identified as potential advancements in Arctic governance: ecosystem-specific, technological, and authoritative solutions; co-production of knowledge; and adaptive co-management. Implementation of nexus approaches can promote more holistic environmental governance and guide cross-sectoral policies.
  •  
12.
  • Rinnan, Riikka, et al. (författare)
  • Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath
  • 2009
  • Ingår i: Journal of Ecology. - : Wiley. - 1365-2745 .- 0022-0477. ; 97:4, s. 788-800
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Climate warming increases the cover of deciduous shrubs in arctic ecosystems and herbivory is also known to have a strong influence on the biomass and composition of vegetation. However, research combining herbivory with warming is largely lacking. Our study describes how warming and simulated herbivory affect vegetation, soil nutrient concentrations and soil microbial communities after 10-13 years of exposure. 2. We established a factorial warming and herbivory-simulation experiment at a subarctic tundra heath in Kilpisjarvi, Finland, in 1994. Warming was carried out using the open-top chamber setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003, and composition and function of soil microbial communities in 2006. 3. Warming increased the cover of V. myrtillus, whereas other plant groups did not show any response. Simulated herbivory of V. myrtillus cancelled out the impact of warming on the species cover, and increased the cover of other dwarf shrubs. 4. The concentrations of NH4+-N, and microbial biomass C and N in the soil were significantly reduced by warming after 10 treatment years but not after 13 treatment years. The reduction in NH4+-N by warming was significant only without simultaneous herbivory treatment, which indicates that simulated herbivory reduced N uptake by vegetation. 5. Soil microbial community composition, based on phospholipid fatty acid (PLFA) analysis, was slightly altered by warming. The activity of cultivable bacterial and fungal communities was significantly increased by warming and the substrate utilization patterns were influenced by warming and herbivory. 6. Synthesis. Our results show that warming increases the cover of V. myrtillus, which seems to enhance the nutrient sink strength of vegetation in the studied ecosystem. However, herbivory partially negates the effect of warming on plant N uptake and interacts with the effect of warming on microbial N immobilization. Our study demonstrates that effects of warming on soil microorganisms are likely to differ in the presence and absence of herbivores.
  •  
13.
  • Stark, Sari, et al. (författare)
  • Contrasting vegetation states do not diverge in soil organic matter storage : evidence from historical sites in tundra
  • 2019
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 100:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystems where severe disturbance has induced permanent shifts in vegetation and soil processes may represent alternative stable states. To date, little is known on how long-lasting changes in soil processes are following such disturbances, and how the changes in plant and soil processes between the alternative states eventually manifest themselves in soil organic matter (SOM) storage. Here, we analyzed plant density, the shrub : forb ratio, microbial respiration, extracellular enzyme activities and SOM stocks in soils of subarctic tundra and historical milking grounds, where reindeer herding induced a vegetation transition from deciduous shrubs to graminoids several centuries earlier but were abandoned a century ago. This provides the possibility to compare sites with similar topography, but highly contrasting vegetation for centuries. We found that enzymatic activities and N:P stoichiometry differed between control and disturbed sites, confirming that culturally induced vegetation shifts exert lasting impacts on tundra soil processes. Transition zones, where shrubs had encroached into the historical milking grounds during the past 50 yr, indicated that microbial activities for N and P acquisition changed more rapidly along a vegetation shift than those for microbial C acquisition. Although plant and soil processes differed between control and disturbed sites, we found no effect of historical vegetation transition on SOM stock. Across the study sites, soil SOM stocks were correlated with total plant density but not with the shrub : forb ratio. Our finding that SOM stock was insensitive to a centennial difference in plant community composition suggests that, as such, grazing-induced alternative vegetation states might not necessarily differ in SOM sequestration.
  •  
14.
  • Stark, Sari, et al. (författare)
  • Decreased soil microbial nitrogen under vegetation 'shrubification' in the subarctic forest–tundra ecotone : the potential role of increasing nutrient competition between plants and soil microorganisms
  • 2023
  • Ingår i: Ecosystems. - : Springer Nature. - 1432-9840 .- 1435-0629. ; 26:7, s. 1504-1523
  • Tidskriftsartikel (refereegranskat)abstract
    • The consequences of warming-induced ‘shrubification’ on Arctic soil carbon storage are receiving increased attention, as the majority of ecosystem carbon in these systems is stored in soils. Soil carbon cycles in these ecosystems are usually tightly coupled with nitrogen availability. Soil microbial responses to ‘shrubification’ may depend on the traits of the shrub species that increase in response to warming. Increase in deciduous shrubs such as Betula nana likely promotes a loss of soil carbon, whereas the opposite may be true if evergreen shrubs such as Empetrum hermaphroditum increase. We analyzed soil organic matter stocks and 13C NMR fractions, microbial CO2 respiration, biomass, extracellular enzyme activities (EEAs), and their association with shrub density in northern Sweden after 20 years of experimental warming using open top chambers (OTCs). Our study sites were located in a tundra heath that stores high soil carbon quantities and where the OTCs had increased deciduous shrubs, and in a mountain birch forest that stores lower soil carbon quantities and where the OTCs had increased evergreen shrubs. We predicted that organic matter stocks should be lower and respiration and EEAs higher inside the OTCs than untreated plots in the tundra, whereas no effect should be detected in the forest. Soil organic matter stocks and 13C NMR fractions remained unaffected at both sites. When expressed as per gram microbial biomass, respiration and EEAs for carbohydrate and chitin degradation were higher inside the OTCs, and contrasting our prediction, this effect was stronger in the forest. Unexpectedly, the OTCs also led to a substantially lower microbial biomass carbon and nitrogen irrespective of habitat. The decline in the microbial biomass counteracted increased activities resulting in no effect of the OTCs on respiration and a lower phenol oxidase activity per gram soil. Microbial biomass nitrogen correlated negatively with evergreen shrub density at both sites, indicating that ‘shrubification’ may have intensified nutrient competition between plants and soil microorganisms. Nutrient limitation could also underlie increased respiration per gram microbial biomass through limiting C assimilation into biomass. We hypothesize that increasing nutrient immobilization into long-lived evergreen shrubs could over time induce microbial nutrient limitation that contributes to a stability of accumulated soil organic matter stocks under climate warming.
  •  
15.
  •  
16.
  • Stark, Sari, et al. (författare)
  • The ecosystem effects of reindeer (Rangifer tarandus) in northern Fennoscandia : past, present and future
  • 2023
  • Ingår i: Perspectives in plant ecology, evolution and systematics. - : Elsevier. - 1433-8319 .- 1618-0437. ; 58
  • Forskningsöversikt (refereegranskat)abstract
    • The semi-domesticated nature of the reindeer (Rangifer tarandus L.) makes it a distinct case among the world's herbivores. Here, we review the literature on how reindeer shape vegetation and soil carbon and nitrogen cycles in northernmost Fennoscandia. We first describe main historical events that shaped the present-day grazing patterns in the different countries, then discuss the methodological considerations needed for interpreting evidence from grazer exclosures in ecological and environmental contexts. We argue that it is critical to be aware that these experiments do not measure the effect of grazing per se, but rather, they measure the responses of existing ecosystem structure and function to the sudden cessation of grazing in an environment, which was to a large degree shaped by it. Studies show that the direction and the magnitude of the effects of reindeer on vegetation and soil processes vary across habitats and depend on both the current land-uses and the historically formed grazing regimes; knowledge of the history is thus a key prerequisite for understanding the role of reindeer in ecosystems. As a general trend, reindeer affect soil nutrient cycles to a stronger extent in subarctic than in boreal ecosystems. In sites where reindeer have changed soil nutrient availability, they indirectly modify vegetation and productivity even after the cessation of grazing. We reason that the concepts of cultural and natural landscapes are not mutually exclusive in the case of reindeer ranges. Understanding how the intensity and seasonal timing of both past and present grazing direct ecosystem changes under climate warming is crucial for predicting future ecosystem structures and functioning in northern Fennoscandia as well as ecosystems in general.
  •  
17.
  • Tuomi, Maria, et al. (författare)
  • Stomping in silence : Conceptualizing trampling effects on soils in polar tundra
  • 2021
  • Ingår i: Functional Ecology. - : Wiley. - 0269-8463 .- 1365-2435. ; 35:2, s. 306-317
  • Forskningsöversikt (refereegranskat)abstract
    • Ungulate trampling modifies soils and interlinked ecosystem functions across biomes. Until today, most research has focused on temperate ecosystems and mineral soils while trampling effects on cold and organic matter-rich tundra soils remain largely unknown. We aimed to develop a general model of trampling effects on soil structure, biota, microclimate and biogeochemical processes, with a particular focus on polar tundra soils. To reach this goal, we reviewed literature about the effects of trampling and physical disturbances on soils across biomes and used this to discuss the knowns and unknowns of trampling effects on tundra soils. We identified the following four pathways through which trampling affects soils: (a) soil compaction; (b) reductions in soil fauna and fungi; (c) rapid losses in vegetation biomass and cover; and (d) longer term shifts in vegetation community composition. We found that, in polar tundra, soil responses to trampling pathways 1 and 3 could be characterized by nonlinear dynamics and tundra-specific context dependencies that we formulated into testable hypotheses. In conclusion, trampling may affect tundra soil significantly but many direct, interacting and cascading responses remain unknown. We call for research to advance the understanding of trampling effects on soils to support informed efforts to manage and predict the functioning of tundra systems under global changes. A free Plain Language Summary can be found within the Supporting Information of this article.
  •  
18.
  • Vaisanen, Maria, et al. (författare)
  • Consequences of warming on tundra carbon balance determined by reindeer grazing history
  • 2014
  • Ingår i: Nature Climate Change. - 1758-678X .- 1758-6798. ; 4:5, s. 384-388
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic tundra currently stores half of the global soil carbon (C) stock(1). Climate warming in the Arctic may lead to accelerated CO2 release through enhanced decomposition and turn Arctic ecosystems from a net C sink into a net C source, if warming enhances decomposition more than plant photosynthesis(2). A large portion of the circumpolar Arctic is grazed by reindeer/caribou, and grazing causes important vegetation shifts in the long-term. Using a unique experimental set-up, where areas experiencing more than 50 years of either light (LG) or heavy (HG) grazing were warmed and/or fertilized, we show that under ambient conditions areas under LG were a 70% stronger C sink than HG areas. Although warming decreased the C sink by 38% under LG, it had no effect under HG. Grazing history will thus be an important determinant in the response of ecosystem C balance to climate warming, which at present is not taken into account in climate change models.
  •  
19.
  • Väisänen, Maria, et al. (författare)
  • Phenolic responses of mountain crowberry (Empetrum nigrum ssp. hermaphroditum) to global climate change are compound specific and depend on grazing by reindeer (Rangifer tarandus)
  • 2013
  • Ingår i: Journal of Chemical Ecology. - : Springer. - 0098-0331 .- 1573-1561. ; 39:11-12, s. 1390-1399
  • Tidskriftsartikel (refereegranskat)abstract
    • Mountain crowberry (Empetrum nigrum ssp. hermaphroditum) is a keystone species in northern ecosystems and exerts important ecosystem-level effects through high concentrations of phenolic metabolites. It has not been investigated how crowberry phenolics will respond to global climate change. In the tundra, grazing by reindeer (Rangifer tarandus) affects vegetation and soil nutrient availability, but almost nothing is known about the interactions between grazing and global climate change on plant phenolics. We performed a factorial warming and fertilization experiment in a tundra ecosystem under light grazing and heavy grazing and analyzed individual foliar phenolics and crowberry abundance. Crowberry was more abundant under light grazing than heavy grazing. Although phenolic concentrations did not differ between grazing intensities, responses of crowberry abundance and phenolic concentrations to warming varied significantly depending on grazing intensity. Under light grazing, warming increased crowberry abundance and the concentration of stilbenes, but decreased e.g., the concentrations of flavonols, condensed tannins, and batatasin-III, resulting in no change in total phenolics. Under heavy grazing, warming did not affect crowberry abundance, and induced a weak but consistent decrease among the different phenolic compound groups, resulting in a net decrease in total phenolics. Our results show that the different phenolic compound groups may show varying or even opposing responses to warming in the tundra at different levels of grazing intensity. Even when plant phenolic concentrations do not directly respond to grazing, grazers may have a key control over plant responses to changes in the abiotic environment, reflecting multiple adaptive purposes of plant phenolics and complex interactions between the biotic and the abiotic factors.
  •  
20.
  • Windirsch, Torben, et al. (författare)
  • Impacts of reindeer on soil carbon storage in the seasonally frozen ground of northern Finland : a pilot study
  • 2023
  • Ingår i: Boreal environment research. - : Finish Environment Institute. - 1239-6095 .- 1797-2469. ; 28:1-6, s. 207-226
  • Tidskriftsartikel (refereegranskat)abstract
    • To test the effect of reindeer husbandry on soil carbon storage of seasonally frozen ground, we analysed soil and vegetation properties in peatlands and mixed pine and mountain birch forests. We analysed sites with no grazing and contrasting intensities of grazing, and associated trampling, in Northern Finland. With a pilot study approach, we optimised the study design to include several grazing class sites including grazing seasonality but omitting sample replication at one site. Soils were analysed for water content, bulk density, total organic carbon (TOC), total nitrogen, stable carbon isotopes and radiocarbon ages. We found that there was no significant difference between grazing intensities in terms of TOC, but that TOC mainly depended on the soils' TOC content present prior to intensive herbivory introduction. In contrast, understory vegetation was visibly transformed from dwarf shrub to graminoid-dominated vegetation with increasing grazing and trampling intensity. Also, we found a decrease in bulk density with increasing animal activity on soil sites, which most likely results from named vegetation changes and therefore different peat structures.
  •  
21.
  • Ylänne, Henni, et al. (författare)
  • Consequences of grazer-induced vegetation transitions on ecosystem carbon storage in the tundra
  • 2018
  • Ingår i: Functional Ecology. - : John Wiley & Sons. - 0269-8463 .- 1365-2435. ; 32:4, s. 1091-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Large herbivores can control plant community composition and, under certain conditions, even induce vegetation shifts to alternative ecosystem states. As different plant assemblages maintain contrasting carbon (C) cycling patterns, herbivores have the potential to alter C sequestration at regional scales. Their influence is of particular interest in the Arctic tundra, where a large share of the world's soil C reservoir is stored.2. We assessed the influence of grazing mammals on tundra vegetation and C stocks by resampling two sites located along pasture rotation fences in northern Norway. These fences have separated lightly grazed areas from heavily grazed areas (in close proximity to the fences) and moderately grazed areas (further away from the fences) for the past 50years. Fourteen years earlier, the lightly and moderately grazed areas were dominated by dwarf shrubs, whereas heavy grazing had promoted the establishment of graminoid-dominated vegetation. Since then, both reindeer densities and temperatures have increased, and more time has passed for transient dynamics to be expressed. We expected that the vegetation and C stocks would have changed under all grazing intensities, but not necessarily in the same way.3. At the site where relative reindeer numbers and trampling intensity had increased the most, graminoid-dominated vegetation was now also found in the moderately grazed area. At the other site, the dominant vegetation types under all grazing intensities were the same as 14 years earlier.4. We show that the heavily grazed, graminoid-dominated areas stored less C above-ground than the lightly grazed, shrub-dominated areas. Yet, the below-ground consequences of grazing-induced grassification varied between the sites: Grazing did not alter organic soil C stocks at the site where both evergreen and deciduous shrubs were abundant in the lightly grazed area, whereas heavy grazing increased organic soil C stocks at the site where the deciduous shrub Betula nana was dominant.5. Our results indicate that, despite the negative impacts of grazers on above-ground C storage, their impact on below-ground C may even be positive. We suggest that the site-specific responses of organic soil C stocks to grazing could be explained by the differences in vegetation under light grazing. This would imply that the replacement of deciduous shrubs by graminoids, as a consequence of grazing could be beneficial for C sequestration in tundra soils.
  •  
22.
  • Ylänne, Henni, et al. (författare)
  • Distinguishing Rapid and Slow C Cycling Feedbacks to Grazing in Sub-arctic Tundra
  • 2019
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 22:5, s. 1145-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • Large grazers are known to affect ecosystem functioning even to the degree where ecosystems transition to another vegetation state. Alongside the vegetation change, several features of ecosystem functioning, such as ecosystem carbon sink capacity and soil carbon mineralisation rates, may be altered. It has remained largely uninvestigated how the grazing effects on carbon cycling processes depend on the duration of grazing. Here, we hypothesised that grazing affects ecosystem carbon sink through plant-driven processes (for example, photosynthesis) on shorter time-scales, whereas on longer time-scales changes in soil-driven processes (for example, microbial activity) become more important contributing to a decreased carbon sink capacity. To test this hypothesis, we investigated key processes behind ecosystem carbon cycling in an area that recently had become dominated by graminoids due to a high reindeer grazing intensity and compared these to the processes in an area of decades old grazing-induced graminoid dominance and in an area of shrub dominance with little grazer influence. In contrast to our hypothesis, areas of both old and recent grassification showed a similar carbon sink capacity. Yet the individual fluxes varied depending on the time passed since the vegetation shift: ecosystem respiration and mid-season photosynthesis were higher under old than recent grassification. In contrast, the extracellular enzyme activities for carbon and phosphorus acquisition were similar regardless of the time elapsed since grazer-induced vegetation change. These results provide novel understanding on how ecosystem processes develop over time in response to changes in the intensity of herbivory. Moreover, they indicate that both autotrophic and heterotrophic processes are controlled through multiple drivers that likely change depending on the duration of herbivory.
  •  
23.
  • Ylänne, Henni, et al. (författare)
  • Removal of grazers alters the response of tundra soil carbon to warming and enhanced nitrogen availability
  • 2020
  • Ingår i: Ecological Monographs. - : Wiley. - 0012-9615 .- 1557-7015. ; 90:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The circumpolar Arctic is currently facing multiple global changes that have the potential to alter the capacity of tundra soils to store carbon. Yet, predicting changes in soil carbon is hindered by the fact that multiple factors simultaneously control processes sustaining carbon storage and we do not understand how they act in concert. Here, we investigated the effects of warmer temperatures, enhanced soil nitrogen availability, and the combination of these on tundra carbon stocks at three different grazing regimes: on areas with over 50-yr history of either light or heavy reindeer grazing and in 5-yr-old exlosures in the heavily grazed area. In line with earlier reports, warming generally decreased soil carbon stocks. However, our results suggest that the mechanisms by which warming decreases carbon storage depend on grazing intensity: under long-term light grazing soil carbon losses were linked to higher shrub abundance and higher enzymatic activities, whereas under long-term heavy grazing, carbon losses were linked to drier soils and higher enzymatic activities. Importantly, under enhanced soil nitrogen availability, warming did not induce soil carbon losses under either of the long-term grazing regimes, whereas inside exclosures in the heavily grazed area, also the combination of warming and enhanced nutrient availability induced soil carbon loss. Grazing on its own did not influence the soil carbon stocks. These results reveal that accounting for the effect of warming or grazing alone is not sufficient to reliably predict future soil carbon storage in the tundra. Instead, the joint effects of multiple global changes need to be accounted for, with a special focus given to abrupt changes in grazing currently taking place in several parts of the Arctic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23
Typ av publikation
tidskriftsartikel (19)
annan publikation (2)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Stark, Sari (23)
Olofsson, Johan (15)
Ylänne, Henni (5)
Väisänen, Maria (5)
Barthelemy, Hélène (5)
Forbes, Bruce C. (3)
visa fler...
Männistö, Minna K (3)
Michelsen, Anders (3)
Kaarlejärvi, Elina (3)
Aronsson, Kjell-Åke (3)
Ahonen, Saija H K (2)
Horstkotte, Tim, 198 ... (2)
Oksanen, Lauri (2)
Kumpula, Timo (2)
Olofsson, Johan, 197 ... (2)
Sjögersten, Sofie (2)
Strauss, Jens (1)
Fuchs, Matthias (1)
Sarkki, Simo (1)
Ruotsalainen, Anna L ... (1)
Markkola, Annamari (1)
Matthes, Heidrun (1)
Allard, Anna (1)
Komu, Teresa (1)
Speed, James D. M. (1)
Julkunen-Tiitto, Rii ... (1)
Rinnan, Riikka (1)
Barrio, Isabel C. (1)
Petit Bon, Matteo (1)
Windirsch, Torben (1)
Bueno, C. Guillermo (1)
Egelkraut, Dagmar (1)
Ehrich, Dorothee (1)
Macias-Fauria, Marc (1)
Kaarlejärvi, Elina, ... (1)
Kytöviita, Minna-Maa ... (1)
Nobel, Liv Alexa (1)
Telkki, Ville-Veikko (1)
Mikola, Juha (1)
Grosse, Guido (1)
Kumar, Manoj (1)
Rixen, Christian (1)
Jónsdóttir, Ingibjör ... (1)
Macek, Petr (1)
Torp, Mikaela (1)
Eronen, Jussi T. (1)
Landauer, Mia (1)
Bjerke, Jarle W. (1)
Habeck, J. Otto (1)
Åkerholm, Marianne (1)
visa färre...
Lärosäte
Umeå universitet (19)
Lunds universitet (5)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy