SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenerlöw Bo) "

Sökning: WFRF:(Stenerlöw Bo)

  • Resultat 1-50 av 106
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mattsson, Sören, et al. (författare)
  • Swedish Cancer Society radiation therapy research investigation
  • 2002
  • Ingår i: Acta Oncologica. - 0284-186X .- 1651-226X. ; 41:7-8, s. 596-603
  • Tidskriftsartikel (refereegranskat)abstract
    • In an investigation by the Swedish Cancer Society, the present status, critical issues and future aspects and prospects were described by an expert group for each of nine major areas of radiation research. A summary of the investigation is presented in this report. A more extensive summary (in Swedish) can be found at www.Cancerfonden.se. It is concluded that radiation therapy plays an increasingly important role in curative and palliative tumour treatment and presents a considerable challenge to research. Several suggestions are made that could improve the possibilities for high-quality radiation therapy research in Sweden.
  •  
2.
  •  
3.
  • Abramenkovs, Andris, 1989- (författare)
  • Induction and repair of clustered DNA damage sites after exposure to ionizing radiation
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The mechanisms that maintain genomic stability safeguard cells from constant DNA damage produced by endogenous and external stressors. Therefore, this thesis aimed to specifically address questions regarding the requirement and involvement of DNA repair proteins in the repair of various types of radiation-induced DNA damage.The first aim was to determine whether the phosphorylation of DNA-PKcs, a major kinase involved in non-homologous end joining pathway, can be utilized to score the DNA double-strand break (DSB) content in cells. DNA-PKcs phosphorylated (pDNA-PKcs) at T2609 was more sensitive to the cellular DSB content than ɣH2AX, as analyzed by flow cytometry. Further, pDNA-PKcs at T2609 could discriminate between DSB repair-compromised and normal cells, confirming that the pDNA-PKcs can be used as a DSB repair marker. In paper II, the DSB repair was assessed in cells with reduced levels of DNA-PKcs. The reduction in DNA-PKcs resulted in decreased cell survival and unaffected DSB repair. These results clearly indicate that DNA-PKcs plays an additional role in promoting cell survival in addition to its function in DSB repair.The second part of the thesis focused on the characterization of complex DNA damage. DNA damage was investigated after exposure to α-particles originating from Ra-223. The Ra-223 treatment induced a nonrandom DSB distribution consistent with damage induced by high-linear energy transfer radiation. The exposure to Ra-223 significantly reduced cell survival in monolayers and 3D cell structures. The last paper unraveled the fate of heat-sensitive clustered DNA damage site (HSCS) repair in cells. HSCS repair was independent of DSB repair, and these lesions did not contribute to the generation of additional DSBs during repair. Prolonged heating of DNA at relatively low temperatures induced structural changes in the DNA that contributed to the production of DNA artifacts.In conclusion, these results demonstrate that DNA-PKcs can be used to monitor DSB repair in cells after exposure to ionizing radiation. However, the functions of DNA-PKcs are not limited to DSB repair, as it can promote cell survival through other mechanisms. The complexity of the DNA damage produced by high-LET radiation is a major contributor to cell death. However, not all clusters produced in irradiated cells are converted into DSBs during repair.
  •  
4.
  • Abramenkovs, Andris, et al. (författare)
  • Measurement of DNA-Dependent Protein Kinase Phosphorylation Using Flow Cytometry Provides a Reliable Estimate of DNA Repair Capacity
  • 2017
  • Ingår i: Radiation Research. - : RADIATION RESEARCH SOC. - 0033-7587 .- 1938-5404. ; 188:6, s. 597-604
  • Tidskriftsartikel (refereegranskat)abstract
    • Uncontrolled generation of DNA double-strand breaks (DSBs) in cells is regarded as a highly toxic event that threatens cell survival. Radiation-induced DNA DSBs are commonly measured by pulsed-field gel electrophoresis, microscopic evaluation of accumulating DNA damage response proteins (e.g., 53BP1 or gamma-H2AX) or flow cytometric analysis of gamma-H2AX. The advantage of flow cytometric analysis is that DSB formation and repair can be studied in relationship to cell cycle phase or expression of other proteins. However, gamma-H2AX is not able to monitor repair kinetics within the first 60 min postirradiation, a period when most DSBs undergo repair. A key protein in non-homologous end joining repair is the catalytic subunit of DNA-dependent protein kinase. Among several phosphorylation sites of DNA-dependent protein kinase, the threonine at position 2609 (T2609), which is phosphorylated by ataxia telangiectasia mutated (ATM) or DNA-dependent protein kinase catalytic subunit itself, activates the end processing of DSB. Using flow cytometry, we show here that phosphorylation at T2609 is faster in response to DSBs than gamma-H2AX. Furthermore, flow cytometric analysis of T2609 resulted in a better representation of fast repair kinetics than analysis of gamma-H2AX. In cells with reduced ligase IV activity, and wild-type cells where DNA-dependent protein kinase activity was inhibited, the reduced DSB repair capacity was observed by T2609 evaluation using flow cytometry. In conclusion, flow cytometric evaluation of DNA-dependent protein kinase T2609 can be used as a marker for early DSB repair and gives a better representation of early repair events than analysis of gamma-H2AX.
  •  
5.
  • Abramenkovs, Andris, et al. (författare)
  • Ra-223 induces clustered DNA damage and inhibits cell survival in several prostate cancer cell lines
  • 2022
  • Ingår i: Translational Oncology. - : Elsevier. - 1944-7124 .- 1936-5233. ; 26
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-seeking radiopharmaceutical Xofigo (Radium-223 dichloride) has demonstrated both extended sur-vival and palliative effects in treatment of bone metastases in prostate cancer. The alpha-particle emitter Ra-223, targets regions undergoing active bone remodeling and strongly binds to bone hydroxyapatite (HAp). However, the toxicity mechanism and properties of Ra-223 binding to hydroxyapatite are not fully understood. By exposing 2D and 3D (spheroid) prostate cancer cell models to free and HAp-bound Ra-223 we here studied cell toxicity, apoptosis and formation and repair of DNA double-strand breaks (DSBs). The rapid binding with a high affinity of Ra-223 to bone-like HAp structures was evident (KD= 19.2 x 10-18 M) and almost no dissociation was detected within 24 h. Importantly, there was no significant uptake of Ra-223 in cells. The Ra-223 alpha-particle decay produced track-like distributions of the DNA damage response proteins 53BP1 and gamma H2AX induced high amounts of clustered DSBs in prostate cancer cells and activated DSB repair through non-homologous end-joining (NHEJ). Ra-223 inhibited growth of prostate cancer cells, independent of cell type, and induced high levels of apoptosis. In summary, we suggest the high cell killing efficacy of the Ra-223 was attributed to the clustered DNA damaged sites induced by alpha-particles.
  •  
6.
  •  
7.
  • Abramenkovs, Andris, et al. (författare)
  • Removal of heat-sensitive clustered damaged DNA sites is independent of double-strand break repair
  • 2018
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA double-strand breaks (DSBs) are the most deleterious lesions that can arise in cells after ionizing radiation or radiometric drug treatment. In addition to prompt DSBs, DSBs may also be produced during repair, evolving from a clustered DNA damaged site, which is composed of two or more distinct lesions that are located within two helical turns. A specific type of cluster damage is the heat-sensitive clustered site (HSCS), which transforms into DSBs upon treatment at elevated temperatures. The actual lesions or mechanisms that mediate the HSCS transformation into DSBs are unknown. However, there are two possibilities; either these lesions are transformed into DSBs due to DNA lesion instability, e.g., transfer of HSCS into single-strand breaks (SSBs), or they are formed due to local DNA structure instability, e.g., DNA melting, where two SSBs on opposite strands meet and transform into a DSB. The importance of these processes in living cells is not understood, but they significantly affect estimates of DSB repair capacity. In this study, we show that HSCS removal in human cells is not affected by defects in DSB repair or inhibition of DSB repair. Under conditions where rejoining of prompt DSBs was almost completely inhibited, heat-sensitive DSBs were successfully rejoined, without resulting in increased DSB levels, indicating that HSCS do not transfer into DSB in cells under physiological conditions. Furthermore, analysis by atomic force microscopy suggests that prolonged heating of chromosomal DNA can induce structural changes that facilitate transformation of HSCS into DSB. In conclusion, the HSCS do not generate additional DSBs at physiological temperatures in human cells, and the repair of HSCS is independent of DSB repair.
  •  
8.
  • Abramenkovs, Andris, et al. (författare)
  • The α-emitter Ra-223 induces clustered DNA damage and significantly reduces cell survival
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The bone-seeking radiopharmaceutical Xofigo (Radium-223 dichloride) has demonstrated both extended survival and palliative effects in treatment of bone metastases in patients with prostate cancer. The alpha-particle emitter Ra-223, administered as Ra-223 dichloride, targets regions undergoing active bone remodeling and strongly binds hydroxyapatite found in bone. However, the mechanisms mediating toxicity and properties of Ra-223 binding to hydroxyapatite are not fully understood. In the current study, we show that the alpha-particles originating from the Ra-223 decay chain produce a track-like distribution of the DNA damage response proteins 53BP1 and ɣH2AX and induce high amounts of clustered DNA double-strand breaks in prostate cancer cell nuclei. The Ra-223 treatment inhibited growth of prostate cancer cells, grown in 2D- and 3D- models in vitro, independent of prostate cancer cell type and androgen receptor variant 7 (ARv7) expression. The rapid binding with a high affinity of Ra-223 to bone structures was verified in an in silico assay (KD= 19.2 ± 6.5 e-18) and almost no dissociation was detected within 24 hours. Importantly, there was no significant uptake of Ra-223 in cells. Further, we demonstrate the importance of the local dose-distribution of this treatment; there was more than 100-fold increase in cell killing when Ra-223 was attached to the bone-like hydroxyapatite structure, compared to when the radioactivity was distributed in the cell growth media. However, independent of the exposure condition, the high cell killing efficacy of the Ra-223 was attributed to the clustered DNA damaged sites induced by the released α-particles.
  •  
9.
  • Bajinskis, Ainars, 1973- (författare)
  • Studies of DNA repair strategies in response to complex DNA damages
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The main aim of this thesis was to study the role of the indirect actions of γ-rays and α-particles on the complexity of primary DNA damages and the repair fidelity of major DNA repair pathways: non-homologous end joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER). The complexity of radiation-induced damages increases and the proximity between damages decreases with increasing LET due to formation of ionization clusters along the particle track. The complexity of damages formed can be modified by the free radical scavenger dimethyl sulfoxide (DMSO). In addition, the effects of low doses of low dose rate γ-radiation on cellular response in terms of differentiation were investigated.Paper I investigates the role of the indirect effect of radiation on repair fidelity of HRR, NHEJ and BER when damages of different complexity were induced by radiation or by potassium bromate. We found that potassium bromate induces complex DNA damages through processing of base modifications and that the indirect effect of radiation has a high impact on the NHEJ pathway. Results in paper II confirmed our conclusions in paper I that the indirect effect from both γ-rays and α-particles has an impact on all three repair pathways studied and NHEJ benefits the most when the indirect effect of radiation is removed.In paper III we investigated the effects of low dose/dose rate γ-radiation on the developmental process of neural cells by using cell models for neurons and astrocytes. Our results suggest that low dose/dose rate γ-radiation attenuates differentiation and down-regulates proteins involved in the differentiation process of neural cells by an epigenetic rather than cytotoxic mechanism.
  •  
10.
  •  
11.
  • Bivehed, Erik, et al. (författare)
  • Visualizing DNA single- and double-strand breaks in the Flash comet assay by DNA polymerase-assisted end-labelling
  • 2024
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 52:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In the comet assay, tails are formed after single-cell gel electrophoresis if the cells have been exposed to genotoxic agents. These tails include a mixture of both DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). However, these two types of strand breaks cannot be distinguished using comet assay protocols with conventional DNA stains. Since DSBs are more problematic for the cells, it would be useful if the SSBs and DSBs could be differentially identified in the same comet. In order to be able to distinguish between SSBs and DSBs, we designed a protocol for polymerase-assisted DNA damage analysis (PADDA) to be used in combination with the Flash comet protocol, or on fixed cells. By using DNA polymerase I to label SSBs and terminal deoxynucleotidyl transferase to label DSBs with fluorophore-labelled nucleotides. Herein, TK6-cells or HaCat cells were exposed to either hydrogen peroxide (H2O2), ionising radiation (X-rays) or DNA cutting enzymes, and then subjected to a comet protocol followed by PADDA. PADDA offers a wider detection range, unveiling previously undetected DNA strand breaks. Graphical Abstract
  •  
12.
  • Blomgren, Jan, et al. (författare)
  • Progress in Dosimetry of Neutrons and Light Nuclei
  • 2007
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 126:1-4, s. 1-2
  • Forskningsöversikt (övrigt vetenskapligt/konstnärligt)
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Buratovic, Sonja, et al. (författare)
  • Developmental effects of fractionated low-dose exposure to gamma radiation on behaviour and susceptibility of the cholinergic system in mice
  • 2016
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 92:7, s. 371-379
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To investigate whether neonatal exposure to fractionated external gamma radiation and co-exposure to radiation and nicotine can affect/exacerbate developmental neurotoxic effects, including altered behavior/cognitive function and the susceptibility of the cholinergic system in adult male mice. Materials and methods: Neonatal male Naval Medical Research Institute (NMRI) mice were irradiated with one 200 mGy fraction/day and/or exposed to nicotine (66 μg/kg b.w.) twice daily on postnatal day (PND) 10, 10–11, 10–12 or 10–13 (nicotine only). At 2 months of age the animals were tested for spontaneous behavior in a novel home environment, habituation capacity and nicotine-induced behavior. Results: Fractionated irradiation and co-exposure to radiation and nicotine on three consecutive days disrupted behavior and habituation and altered susceptibility of the cholinergic system. All observed effects were significantly more pronounced in mice co-exposed to both radiation and nicotine. Conclusions: The fractionated irradiation regime affects behavior/cognitive function in a similar manner as has previously been observed for single-dose exposures. Neonatal co-exposure to radiation and nicotine, during a critical period of brain development in general and cholinergic system development in particular, enhance these behavioral defects suggesting that the cholinergic system can be a target system for this type of developmental neurotoxic effects.
  •  
17.
  •  
18.
  • Buratovic, Sonja, 1986-, et al. (författare)
  • Effects on adult cognitive function after neonatal exposure to clinically relevant doses of ionising radiation and ketamine in mice
  • 2018
  • Ingår i: British Journal of Anaesthesia. - : ELSEVIER SCI LTD. - 0007-0912 .- 1471-6771. ; 120:3, s. 546-554
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Radiological methods for screening, diagnostics and therapy are frequently used in healthcare. In infants and children, anaesthesia/sedation is often used in these situations to relieve the patients' perception of stress or pain. Both ionising radiation (IR) and ketamine have been shown to induce developmental neurotoxic effects and this study aimed to identify the combined effects of these in a murine model. Methods: Male mice were exposed to a single dose of ketamine (7.5 mg kg(-1) body weight) s.c. on postnatal day 10. One hour after ketamine exposure, mice were whole body irradiated with 50-200 mGy gamma radiation (Cs-137). Behavioural observations were performed at 2, 4 and 5 months of age. At 6 months of age, cerebral cortex and hippocampus tissue were analysed for neuroprotein levels. Results: Animals co-exposed to IR and ketamine displayed significant (P <= 0.01) lack of habituation in the spontaneous behaviour test, when compared with controls and single agent exposed mice. In the Morris Water Maze test, co-exposed animals showed significant (P <= 0.05) impaired learning and memory capacity in both the spatial acquisition task and the relearning test compared with controls and single agent exposed mice. Furthermore, in co-exposed mice a significantly (P <= 0.05) elevated level of tau protein in cerebral cortex was observed. Single agent exposure did not cause any significant effects on the investigated endpoints. Conclusion: Co-exposure to IR and ketamine can aggravate developmental neurotoxic effects at doses where the single agent exposure does not impact on the measured variables. These findings show that estimation of risk after paediatric low-dose IR exposure, based upon radiation dose alone, may underestimate the consequences for this vulnerable population.
  •  
19.
  • Buratovic, Sonja, et al. (författare)
  • Exposure to a single dose of ionising radiation during brain development can cause cognitive defects and increased levels of tau in mice
  • 2012
  • Konferensbidrag (refereegranskat)abstract
    • Ionising radiation (IR) is widely used in the medical field for treating tumours, including tumours in the central nervous system, and for imaging techniques such as computed tomography (CT). There is a lack of knowledge and increasing concern about effects and consequences from low dose exposure during critical phases of perinatal and/or neonatal brain development compared to prenatal irradiation. It is known that IR causes neurotoxicological and neurobehavioural defects in mammals. Further, an epidemiological study has suggested that low doses of IR to the human brain during infancy can have a negative effect on cognitive abilities in adulthood. The rapid brain growth spurt (BGS) occurs in humans as well as mice. In humans the BGS starts during the third trimester of pregnancy and continues throughout the first two years of life. In mouse and rat the BGS is neonatal, spanning the first 3-4 weeks of life. The BGS is characterized by maturation of axonal and dendritic outgrowth, establishment of neural connections and acquisition of many new motor and sensory abilities. By using the neonatal mouse as an animal model we are able to study the effect of IR during early periods of brain development and which consequences it has for the adult animal. Disturbances in development caused by nicotine, MeHg, PCBs and PBDEs have previously been shown to alter adult spontaneous behaviour and/or neuroprotein levels in mice.Neonatal NMRI male mice were irradiated (0; 0.35 and 0.5 Gy) at one single occasion on postnatal day 10. Mice serving as controls were placed in plastic dishes for a time-period corresponding to the irradiation. Spontaneous behaviour was tested in a novel home environment at 2- and 4-months of age and parameters observed were locomotion, rearing and total activity. Analyses of important neuroprotein levels were performed on 6-month-old control and 0.5 Gy irradiated mice.Spontaneous behaviour test (locomotion, rearing, total activity revealed a significantly deranged behaviour in 2- and 4-month old mice irradiated with 0.35 or 0.5 Gy in a dose-response related manner, when compared to controls. The behavioural alterations were manifested as a reduced activity during at the beginning of the observational period and a higher activity at the end of the observational period. Analyses of the neuroprotein tau, which in human medicine is used as a biomarker for Alzheimer’s disease, showed a significantly higher level in mice irradiated with 0.5 Gy compared to controls. This demonstrates that a single dose of gamma radiation, given at a defined critical time period during brain development, is sufficient to cause persistently reduced cognitive functions and increased levels of tau in mice.   
  •  
20.
  •  
21.
  • Buratovic, Sonja, 1986- (författare)
  • Low-Dose Ionizing Radiation Induces Neurotoxicity in the Neonate : Acute or fractionated doses and interaction with xenobiotics in mice
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis examines the developmental neurotoxic effects of exposure to low-dose ionizing radiation (IR), alone or together with xenobiotics, during a critical period of neonatal brain development in mice.During mammalian brain development there is a period called the brain growth spurt (BGS), which involves extensive growth and maturation of the brain. It is known that neonatal exposure during the BGS to xenobiotics can have a negative impact on neonatal brain development, resulting in impaired cognitive function in the adult mouse. In humans, the BGS starts during the third trimester of pregnancy and continues for approximately 2 years in the child.  The present thesis has identified a defined critical period, during the BGS, when IR can induce developmental neurotoxicity in mice. The observed neurotoxicity was not dependent on sex or strain and manifested as altered neurobehaviour in the adult mouse. Furthermore, fractionated dose exposures appear to be as potent as a higher acute dose. The cholinergic system can be a target system for developmental neurotoxicity of IR, since alterations in adult mouse cholinergic system susceptibility were observed. Co-exposure to IR and nicotine exacerbated the behavioural disturbances and cholinergic system dysfunction. Furthermore, co-exposure with the environmental agent paraquat has indicated that the dopaminergic system can be a potential target.  In this thesis, clinically relevant doses of IR and a sedative/anesthetic agent (ketamine) were shown to interact and exacerbate defects in adult mouse neurobehaviour, learning and memory, following neonatal exposure, at doses where the single agents did not have any impact on the measured variables. This indicates a shift in the dose-response curve for IR, towards lower doses, if exposure occurs during the neonatal brain development. In addition, co-exposed mice, showing cognitive defects, expressed elevated levels of tau protein in the cerebral cortex. Furthermore, exacerbation of neurochemical deviations were observed following co-exposure compared to irradiation alone.Further investigations of neurotoxic effects following fractionated or acute low-dose IR, modelling the clinical situation during repeated CT scans or levels of radiation deposited in non-target tissue during radiotherapy, and possible interaction effects with xenobiotics, is of great importance in the field of radioprotection. 
  •  
22.
  •  
23.
  • Buratovic, Sonja, et al. (författare)
  • Neonatal exposure to a moderate dose of ionizing radiation causes behavioural defects and altered levels of tau protein in mice
  • 2014
  • Ingår i: Neurotoxicology. - : Elsevier BV. - 0161-813X .- 1872-9711. ; 45, s. 48-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Medical use of ionizing radiation (IR) has great benefits for treatment and diagnostic imaging, butprocedures as computerized tomography (CT) may deliver a significant radiation dose to the patient.Recently, awareness has been raised about possible non-cancer consequences from low dose exposure toIR during critical phases of perinatal and/or neonatal brain development.In the present study neonatal NMRI mice were whole body irradiated with a single dose of gammaradiation (0; 350 and 500 mGy) on postnatal day 10 (PND 10). At 2 and 4 months of age, mice of bothsexes were observed for spontaneous behaviour in a novel home environment. The neuroproteinsCaMKII, GAP-43, synaptophysin and total tau in male mouse cerebral cortex and hippocampus wereanalysed 24 h post-irradiation and in adults at 6 months of age exposed to 0 or 500 mGy on PND 10.A significantly dose-response related deranged spontaneous behaviour in 2- and 4-month-old micewas observed, where both males and females displayed a modified habituation, indicating reducedcognitive function. The dose of 350 mGy seems to be a tentative threshold. Six-month-old male miceshowed a significantly increased level of total tau in cerebral cortex after irradiation to 500 mGy compared to controls. This demonstrates that a single moderate dose of IR, given during a defined criticalperiod of brain development, is sufficient to cause persistently reduced cognitive function. Moreover, anelevation of tau protein was observed in male mice displaying reduced cognitive function.
  •  
24.
  • Buratovic, Sonja, et al. (författare)
  • Neonatal exposure to a single low dose of ionising radiation causes persistent disruptions in cognitive abilities and increased levels of tau in mice
  • 2013
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Ionising radiation (IR) is extensively used in the medical field for treatment and diagnostics. Concern has been raised about possible negative consequences from low dose exposure to IR during critical phases of perinatal and/or neonatal brain development. The brain growth spurt, which is characterized by maturation of axonal and dendritic outgrowth, establishment of neural connections and acquisition of new motor and sensory abilities, occurs perinatally in humans and neonatally in mice. By using the neonatal mouse as an animal model we are able to study the effect of IR during early periods of brain development and which consequences it has for the adult animal.Neonatal NMRI mice were irradiated (0; 0.35 and 0.5 Gy) at one single occasion on postnatal day 10. At 2- and 4-months of age, spontaneous behaviour was tested in a novel home environment and parameters observed were locomotion, rearing and total activity. Analyses of important neuroproteins in cerebral cortex were performed 24h following irradiation (0 and 0.5 Gy) and at 6-months of age.Observations of spontaneous behaviour revealed a significantly deranged behaviour in 2- and 4-month old mice of both sexes irradiated with 0.35 or 0.5 Gy in a dose response related manner. The observed reduced activity during the beginning of the test period and increased activity at the end of the test period indicates a lack of habituation capacity and disrupted cognitive functions. Neuroprotein analyses of cerebral cortex 24h after irradiation and at 6-months of age showed a significantly increased level of tau in mice irradiated with 0.5 Gy compared to controls. This demonstrates that a single dose of IR, given at a defined critical period during brain development, is sufficient to cause persistently reduced cognitive functions and increased levels of tau in mice. 
  •  
25.
  •  
26.
  • Carlsson, Jörgen, et al. (författare)
  • Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy
  • 2006
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 33:10, s. 1185-1195
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The purpose of this study was to identify combinations of dose rate and exposure time that have the potential to provide curative treatment with targeted radionuclide therapy applying low dose rate beta irradiation. Methods: Five tumour cell lines, U-373MG and U-118MG gliomas, HT-29 colon carcinoma, A-431 cervical squamous carcinoma and SKBR-3 breast cancer, were used. An experimental model with 10(5) tumour cells in each sample was irradiated with low dose rate beta particles. The criterion for successful treatment was absence of recovery of cells during a follow-up period of 3 months. The initial dose rates were in the range 0.1-0.8 Gy/h, and the cells were continuously exposed for 1, 3 or 7 days. These combinations covered dose rates and doses achievable in targeted radionuclide therapy. Results: Continuous irradiation with dose rates of 0.2-0.3 and 0.4-0.6 Gy/h for 7 and 3 days, respectively, could kill all cells in each tumour cell sample. These treatments gave total radiation doses of 30-40 Gy. However, when exposed for just 24 h with about 0.8 Gy/h, only the SKBR-3 cells were successfully treated; all the other cell types recovered. There were large cell type-dependent variations in the growth delay patterns for the cultures that recovered. The U-118MG cells were most resistant and the U-373MG and SKBR-3 cells most sensitive to the treatments. The HT-29 and A-431 cells were intermediate. Conclusion: The results serve as a guideline for the combinations of dose rate and exposure time necessary to kill tumour cells when applying low dose rate beta irradiation. The shift from recovery to "cure" fell within a narrow range of dose rate and exposure time combinations.
  •  
27.
  •  
28.
  • Claesson, Kristina, 1965, et al. (författare)
  • Relative biological effectiveness of the alpha-particle emitter (211)At for double-strand break induction in human fibroblasts.
  • 2007
  • Ingår i: Radiation research. - 0033-7587 .- 1938-5404. ; 167:3, s. 312-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to quantify and to determine the distribution of DNA double-strand breaks (DSBs) in human cells irradiated in vitro and to evaluate the relative biological effectiveness (RBE) of the alpha-particle emitter (211)At for DSB induction. The influence of the irradiation temperature on the induction of DSBs was also investigated. Human fibroblasts were irradiated as intact cells with alpha particles from (211)At, (60)Co gamma rays and X rays. The numbers and distributions of DSBs were determined by pulsed-field gel electrophoresis with fragment analysis for separation of DNA fragments in sizes 10 kbp-5.7 Mbp. A non-random distribution was found for DSB induction after irradiation with alpha particles from (211)At, while irradiation with low-LET radiation led to more random distributions. The RBEs for DSB induction were 2.1 and 3.1 for (60)Co gamma rays and X rays as the reference radiation, respectively. In the experiments studying temperature effects, nuclear monolayers were irradiated with (211)At alpha particles or (60)Co gamma rays at 2 degrees C or 37 degrees C and intact cells were irradiated with (211)At alpha particles at the same temperatures. The dose-modifying factor (DMF(temp)) for irradiation of nuclear monolayers at 37 degrees C compared with 2 degrees C was 1.7 for (211)At alpha particles and 1.6 for (60)Co gamma rays. No temperature effect was observed for intact cells irradiated with (211)At. In conclusion, irradiation with alpha particles from (211)At induced two to three times more DSB than gamma rays and X rays.
  •  
29.
  • Elmroth, Kerstin, 1970, et al. (författare)
  • DNA-incorporated 125I induces more than one double-strand break per decay in mammalian cells.
  • 2005
  • Ingår i: Radiation research. - 0033-7587 .- 1938-5404. ; 163:4, s. 369-73
  • Tidskriftsartikel (refereegranskat)abstract
    • The Auger-electron emitter 125I releases cascades of 20 electrons per decay that deposit a great amount of local energy, and for DNA-incorporated 125I, approximately one DNA double-strand break (DSB) is produced close to the decay site. To investigate the potential of 125I to induce additional DSBs within adjacent chromatin structures in mammalian cells, we applied DNA fragment-size analysis based on pulsed-field gel electrophoresis (PFGE) of hamster V79-379A cells exposed to DNA-incorporated 125IdU. After accumulation of decays at -70 degrees C in the presence of 10% DMSO, there was a non-random distribution of DNA fragments with an excess of fragments <0.5 Mbp and the measured yield was 1.6 DSBs/decay. However, since these experiments were performed under high scavenging conditions (DMSO) that reduce indirect effects, the yield in cells exposed to 125IdU under physiological conditions would most likely be even higher. In contrast, using a conventional low-resolution assay without measurement of smaller DNA fragments, the yield was close to one DSB/decay. We conclude that a large fraction of the DSBs induced by DNA-incorporated 125I are nonrandomly distributed and that significantly more than one DSB/decay is induced in an intact cell. Thus, in addition to DSBs produced close to the decay site, DSBs may also be induced within neighboring chromatin fibers, releasing smaller DNA fragments that are not detected by conventional DSB assays.
  •  
30.
  • Elmroth, Kerstin, 1970, et al. (författare)
  • Influence of chromatin structure on induction of double-strand breaks in mammalian cells irradiated with DNA-incorporated 125I.
  • 2007
  • Ingår i: Radiation research. - 0033-7587 .- 1938-5404. ; 168:2, s. 175-82
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study the induction of double-strand breaks (DSBs) was investigated in Chinese hamster V79-379A cells irradiated with the Auger-electron emitter (125)I incorporated into DNA. The role of chromatin organization was studied by pulse-labeling synchronized cells with (125)IdU before decay accumulation in early or late S phase. Pulsed-field gel electrophoresis and fragment-size analysis were used to quantify the distribution of DNA fragments in irradiated intact cells and naked DNA as well as in DNA from asynchronously labeled cultures in a different scavenging environment. The results show that in intact cells, after accumulation of decays at -70 degrees C in the presence of 10% DMSO, almost four times more DSBs were induced in late S phase compared with early S phase and the fragment distribution was clearly non-random with an excess of fragments <0.2 Mbp. The DSB yield was 0.6 DSB/cell and decay for cells irradiated in early S phase and 2.3 DSBs/cell and decay for cells irradiated in late S phase. When similar experiments were performed on naked genomic DNA or intact cells irradiated with gamma rays, the difference in yield was not as prominent. These data imply a role of chromatin organization in the induction of DSBs by DNA-incorporated (125)I. In summary, the results presented here suggest that the yield of DSBs as well as the fragment distribution induced by (125)IdU decay may vary significantly depending on the chromatin organization during S phase and the labeling procedure used.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Eriksson, Per, et al. (författare)
  • Interaction of gamma-radiation and methyl mercury during a  critical phase of neonatal brain development in mice  exacerbates developmental neurobehavioral effects
  • 2010
  • Ingår i: Neurotoxicology. - : Elsevier BV. - 0161-813X .- 1872-9711. ; 31:2, s. 223-229
  • Tidskriftsartikel (refereegranskat)abstract
    • In our environment, mammals (including humans) are exposed to various types of ionizing radiation and both persistent and non-persistent toxic chemicals. It is known that ionizing radiation, as well as methyl mercury, can induce neurotoxicological and neurobehavioural effects in mammals. These developmental neurotoxic effects can be seen following exposure during gestation. There is a lack of knowledge concerning the effects and consequences of low-dose exposure during critical phases of pen natal and/or neonatal brain development, and of the combination of ionizing radiation and environmental chemicals. A recent study has indicated that low doses of ionizing radiation to the human brain during infancy influence cognitive ability in adulthood. In the present study, 10-day old neonatal male NMRI mice were exposed to a single oral dose of MeHg (0.40 or 4.0 mg/kg bw). Four hours after the MeHg exposure the mice were subjected to Co-60 gamma-radiation on one occasion at doses of 0.2 and 0.5 Gy. The animals were then subjected to a spontaneous behaviour test at 2 and 4 months, and a water maze test at the age of 5 months. Neither the single dose of MeHg (0.4 mg/kg bw) nor the radiation dose of 0.2 Gy affected their spontaneous behaviour, whereas the co-exposure to external gamma-radiation and MeHg caused developmental neurotoxic effects. The study shows that gamma-radiation and MeHg can interact and significantly exacerbate developmental neurotoxic effects, as manifested by disrupted spontaneous behaviour, lack of habituation, and impaired learning and memory functions.
  •  
36.
  •  
37.
  •  
38.
  • Eriksson, Per, et al. (författare)
  • Neonatal exposure to whole body ionizing radiation induces adult neurobehavioural defects : Critical period, dose-response effects and strain and sex comparison
  • 2016
  • Ingår i: Behavioural Brain Research. - : Elsevier BV. - 0166-4328 .- 1872-7549. ; 304, s. 11-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of the brain includes periods which can be critical for its normal maturation. The present study investigates specifically vulnerable peri-/postnatal periods in mice which are essential for understanding the etiology behind radiation induced neurotoxicity and functional defects, including evaluation of neurotoxicity between sexes or commonly used laboratory mouse strains following low/moderate doses of ionizing radiation (IR). Male Naval Medical Research Institute (NMRI) mice, whole body irradiated to a single 500 mGy IR dose, on postnatal day (PND) 3 or PND 10 showed an altered adult spontaneous behaviour and impaired habituation capacity, whereas irradiation on PND 19 did not have any impact on the studied variables. Both NMRI and C57bl/6 male and female mice showed an altered adult spontaneous behaviour and impaired habituation following a single whole body irradiation of 500 or 1000 mGy, but not after 20 or 100 mGy, on PND 10. The present study shows that exposure to low/moderate doses of IR during critical life stages might be involved in the induction of neurological/neurodegenerative disorder/disease. A specifically vulnerable period for radiation induced neurotoxicity seems to be around PND 3-10 in mice. Further studies are needed to investigate mechanisms involved in induction of developmental neurotoxicity following low dose irradiation.
  •  
39.
  •  
40.
  • Fakir, Hatim, et al. (författare)
  • Clusters of DNA double-strand breaks induced by different doses of nitrogen ions for various LETs : experimental measurements and theoretical analyses
  • 2006
  • Ingår i: Radiation Research. - 0033-7587 .- 1938-5404. ; 166:6, s. 917-927
  • Tidskriftsartikel (refereegranskat)abstract
    • The yields and clustering of DNA double-strand breaks (DSBs) were investigated in normal human skin fibroblasts exposed to gamma rays or to a wide range of doses of nitrogen ions with various linear energy transfers (LETs). Data obtained by pulsed-field gel electrophoresis on the dose and LET dependence of DNA fragmentation were analyzed with the randomly located clusters (RLC) formalism. The formalism considers stochastic clustering of DSBs along a chromosome due to chromatin structure, particle track structure, and multitrack action. The relative biological effectiveness (RBE) for the total DSB yield did not depend strongly on LET, but particles with higher LET produced higher fractions of small DNA fragments, corresponding in the formalism to an increase in the average number of DSBs per DSB cluster. The results are consistent with the idea that DSB clustering along chromosomes is what leads to large RBEs of high-LET radiations for major biological end points. At a given dose, large fragments are less affected by the variability in LET than small fragments, suggesting that the two free ends in large fragments are often produced by two different tracks. The formalism successfully described an extra increase in small DNA fragments as dose increases and a related decrease in large fragments, mainly due to interlacing of DSB clusters produced along a chromosome by different tracks, since interlacing cuts larger DNA fragments into smaller ones.
  •  
41.
  •  
42.
  • Guerra, Lina, et al. (författare)
  • Cellular internalization of cytolethal distending toxin : a new end to a known pathway
  • 2005
  • Ingår i: Cellular Microbiology. - : Hindawi Limited. - 1462-5814 .- 1462-5822. ; 7:7, s. 921-34
  • Tidskriftsartikel (refereegranskat)abstract
    • The cytolethal distending toxins (CDTs) are unique in their ability to induce DNA damage, activate checkpoint responses and cause cell cycle arrest or apoptosis in intoxicated cells. However, little is known about their cellular internalization pathway. We demonstrate that binding of the Haemophilus ducreyi CDT (HdCDT) on the plasma membrane of sensitive cells was abolished by cholesterol extraction with methyl-beta-cyclodextrin. The toxin was internalized via the Golgi complex, and retrogradely transported to the endoplasmic reticulum (ER), as assessed by N-linked glycosylation. Further translocation from the ER did not require the ER-associated degradation (ERAD) pathway, and was Derlin-1 independent. The genotoxic activity of HdCDT was dependent on its internalization and its DNase activity, as induction of DNA double-stranded breaks was prevented in Brefeldin A-treated cells and in cells exposed to a catalytically inactive toxin. Our data contribute to a better understanding of the CDT mode of action and highlight two important aspects of the biology of this bacterial toxin family: (i) HdCDT translocation from the ER to the nucleus does not involve the classical pathways followed by other retrogradely transported toxins and (ii) toxin internalization is crucial for execution of its genotoxic activity.
  •  
43.
  • Guerra, Lina, et al. (författare)
  • Myc is required for activation of the ATM-dependent checkpoints in response to DNA damage
  • 2010
  • Ingår i: PLOS ONE. - : Public Library Science. - 1932-6203. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The MYC protein controls cellular functions such as differentiation, proliferation, and apoptosis. In response to genotoxic agents, cells overexpressing MYC undergo apoptosis. However, the MYC-regulated effectors acting upstream of the mitochondrial apoptotic pathway are still unknown.PRINCIPAL FINDINGS: In this study, we demonstrate that expression of Myc is required to activate the Ataxia telangiectasia mutated (ATM)-dependent DNA damage checkpoint responses in rat cell lines exposed to ionizing radiation (IR) or the bacterial cytolethal distending toxin (CDT). Phosphorylation of the ATM kinase and its downstream effectors, such as histone H2AX, were impaired in the myc null cell line HO15.19, compared to the myc positive TGR-1 and HOmyc3 cells. Nuclear foci formation of the Nijmegen Breakage Syndrome (Nbs) 1 protein, essential for efficient ATM activation, was also reduced in absence of myc. Knock down of the endogenous levels of MYC by siRNA in the human cell line HCT116 resulted in decreased ATM and CHK2 phosphorylation in response to irradiation. Conversely, cell death induced by UV irradiation, known to activate the ATR-dependent checkpoint, was similar in all the cell lines, independently of the myc status.CONCLUSION: These data demonstrate that MYC contributes to the activation of the ATM-dependent checkpoint responses, leading to cell death in response to specific genotoxic stimuli.
  •  
44.
  • Guidi, Riccardo, et al. (författare)
  • Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response
  • 2013
  • Ingår i: Cellular Microbiology. - : John Wiley & Sons. - 1462-5814 .- 1462-5822. ; 15:1, s. 98-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process.
  •  
45.
  • Gustafsson, Ann-Sofie, et al. (författare)
  • Formation and repair of clustered damaged DNA sites in high LET irradiated cells
  • 2015
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 91:10, s. 820-826
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Radiation with high linear energy transfer (LET) produces clustering of DNA double-strand breaks (DSB) as well as non-DSB lesions. Heat-labile sites (HLS) are non-DSB lesions in irradiated cells that may convert into DSB at elevated temperature during preparation of naked DNA for electrophoretic assays and here we studied the initial formation and repair of these clustered damaged sites after irradiation with high LET ions.MATERIALS AND METHODS: Induction and repair of DSB were studied in normal human skin fibroblast (GM5758) after irradiation with accelerated carbon and nitrogen ions at an LET of 125 eV/nm. DNA fragmentation was analyzed by pulsed-field gel electrophoresis (PFGE) and by varying the lysis condition we could differentiate between prompt DSB and heat-released DSB.RESULTS: Before repair (t = 0 h), the 125 eV/nm ions produced a significant fraction of heat-released DSB, which appeared clustered on DNA fragments with sizes of 1 Mbp or less. These heat-released DSB increased the total number of DSB by 30-40%. This increase is similar to what has been found in low-LET irradiated cells, suggesting that the relative biological effectiveness (RBE) for DSB induction will not be largely affected by the lysis temperature. After 1-2 hours repair, a large fraction of DSB was still unrejoined but there was essentially no heat-released DSB present.CONCLUSIONS: These results suggest that high LET radiation, as low LET gamma radiation, induces a significant fraction of heat-labile sites which can be converted into DSB, and these heat-released DSB may affect both induction yields and estimates of repair.
  •  
46.
  • Gustafsson, Ann-Sofie, 1982- (författare)
  • Radiation response in human cells : DNA damage formation, repair and signaling
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ionizing radiation induces a range of different DNA lesions. In terms of mutation frequency and mammalian cell survival, the most critical of these lesions is the DNA double-strand break (DSB). DSB left unrepaired or mis-repaired may result in chromosomal aberrations that can lead to permanent genetic changes or cell death. The complexity of the DNA damage and the capacity to repair the DSB will determine the fate of the cell. This thesis focuses on the DNA damage formation, repair and signaling after irradiation of human cells.Radiation with high linear energy transfer (LET) produces clustered damaged sites in the DNA that are difficult for the cell to repair. Within these clustered sites, non-DSB lesions are formed that can be converted into a DSB and add to the damage complexity and affect DSB repair and the measurement. Heat-labile sites in DNA are converted into DSB at elevated temperatures. We show that heat-released DSB are formed post-irradiation with high-LET ions and increase the initial yield of DSB by 30%-40%, which is similar to yields induced by low-LET radiation.DNA-PKcs, a central player in non-homologous end-joining (NHEJ), the major mammalian DSB repair pathway, has been found to be both up- and downregulated in different tumor types. In Paper II we show that low levels of DNA-PKcs lead to extreme radiosensitivity but, surprisingly, had no effect on the DSB repair. However, the fraction of cells in G2/M phase increased two-fold in cells with low levels of DNA-PKcs. The study continued in Paper IV, where cells were synchronized to unmask potential roles of DNA-PKcs in specific cell cycle phases. Irradiation of DNA-PKcs suppressed cells in the G1/S phase caused a delay in cell cycle progression and an increase in accumulation of G2 cells. Further, these cells showed defects in DNA repair, where a significant amount of 53BP1 foci remained after 72 h. This further strengthens the hypothesis that DNA-PKcs has a role in regulation of mitotic progression.Several cellular signaling pathways are initiated in response to radiation. One of these downstream signaling proteins is AKT. We identified an interaction between DNA-PKcs and AKT. Knockouts of both AKT1 and AKT2 impaired DSB rejoining after radiation and low levels of DNA-PKcs increased radiosensitivity and decreased DNA repair further.  
  •  
47.
  •  
48.
  •  
49.
  • Gustafsson, Ann-Sofie, et al. (författare)
  • Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair
  • 2014
  • Ingår i: Mutation research. - : Elsevier BV. - 0027-5107 .- 1873-135X. ; 769, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80-95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or gamma-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure which is uncoupled from its essential function in DSB repair. This could have implications for the development of therapeutic strategies aiming to radiosensitize tumors by affecting the DNA-PKcs function.
  •  
50.
  • Haag, Petra, et al. (författare)
  • Caspase-2 is a mediator of apoptotic signaling in response to gemtuzumab ozogamicin in acute myeloid leukemia
  • 2022
  • Ingår i: Cell Death Discovery. - : Springer Nature. - 2058-7716. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The antibody conjugate gemtuzumab ozogamicin (GO; Mylotarg((R))) provides targeted therapy of acute myeloid leukemia (AML), with recent approvals for patients with CD33-positive disease at diagnosis or relapse, as monotherapy or combined with chemotherapeutics. While its clinical efficacy is well documented, the molecular routes by which GO induces AML cell death warrant further analyses. We have earlier reported that this process is initiated via mitochondria-mediated caspase activation. Here we provide additional data, focusing on the involvement of caspase-2 in this mechanism. We show that this enzyme plays an important role in triggering apoptotic death of human AML cells after exposure to GO or its active moiety calicheamicin. Accordingly, the caspase-2 inhibitor z-VDVAD-fmk reduced GO-induced caspase-3 activation. This finding was validated with shRNA and siRNA targeting caspase-2, resulting in reduced caspase-3 activation and cleavage of poly [ADP-ribose] polymerase 1 (PARP-1). We previously demonstrated that GO-induced apoptosis included a conformational change of Bax into a pro-apoptotic state. Present data reveal that GO-treatment also induced Bid cleavage, which was partially reduced by caspase-2 specific inhibition while the effect on GO-induced Bax conformational change remained unaltered. In mononuclear cells isolated from AML patients that responded to GO treatment in vitro, processing of caspase-2 was evident, whereas in cells from an AML patient refractory to treatment no such processing was seen. When assessing diagnostic samples from 22 AML patients, who all entered complete remission (CR) following anthracycline-based induction therapy, and comparing patients with long versus those with short CR duration no significant differences in baseline caspase-2 or caspase-3 full-length protein expression levels were found. In summary, we demonstrate that GO triggers caspase-2 cleavage in human AML cells and that the subsequent apoptosis of these cells in part relies on caspase-2. These findings may have future clinical implications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 106
Typ av publikation
tidskriftsartikel (60)
konferensbidrag (12)
doktorsavhandling (12)
annan publikation (10)
recension (6)
bokkapitel (3)
visa fler...
licentiatavhandling (2)
forskningsöversikt (1)
visa färre...
Typ av innehåll
refereegranskat (59)
övrigt vetenskapligt/konstnärligt (46)
populärvet., debatt m.m. (1)
Författare/redaktör
Stenerlöw, Bo (98)
Eriksson, Per (22)
Fredriksson, Anders (18)
Buratovic, Sonja (18)
Carlsson, Jörgen (13)
Abramenkovs, Andris (11)
visa fler...
Spiegelberg, Diana, ... (10)
Glimelius, Bengt (8)
Lundqvist, Hans (6)
Hoglund, Erik (6)
Tolmachev, Vladimir (5)
Stenerlöw, Bo, Profe ... (5)
Gedda, Lars (5)
Viberg, Henrik (5)
Nestor, Marika, 1976 ... (5)
Spiegelberg, Diana (5)
Grusell, Erik (4)
Blomquist, Erik (4)
Lewensohn, Rolf (4)
Mattsson, Sören (3)
Lennartsson, Johan (3)
Mortensen, Anja (3)
Fischer, Celia (3)
Atkinson, Michael J. (3)
Tapio, Soile (3)
Viktorsson, Kristina (3)
Gordh, Torsten (2)
Lehtiö, Janne (2)
Orlova, Anna (2)
Nilsson, Sten (2)
Essand, Magnus (2)
Brahme, Anders (2)
Zackrisson, Björn (2)
Kjellén, Elisabeth (2)
Eriksson, Olof (2)
Nygren, Jonas (2)
Hellman, Björn (2)
Johansson, Karl-Axel (2)
Tilly, Nina (2)
Steffen, Ann-Charlot ... (2)
Selvaraju, Ram Kumar (2)
Hellström, Mikael (2)
Fox, James G (2)
Turesson, Ingela (2)
Hauck, Stefanie M. (2)
Kempf, Stefan J. (2)
Heldin, Johan (2)
Frisan, Teresa, 1967 ... (2)
Frisk, Peter (2)
Bivehed, Erik (2)
visa färre...
Lärosäte
Uppsala universitet (97)
Karolinska Institutet (13)
Sveriges Lantbruksuniversitet (7)
Göteborgs universitet (6)
Stockholms universitet (4)
Umeå universitet (3)
visa fler...
Linköpings universitet (2)
Lunds universitet (1)
visa färre...
Språk
Engelska (104)
Svenska (1)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (45)
Naturvetenskap (21)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy