SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sterby Mia 1989 ) "

Sökning: WFRF:(Sterby Mia 1989 )

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Emanuelsson, Rikard, et al. (författare)
  • An All-Organic Proton Battery
  • 2017
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 139:13, s. 4828-4834
  • Tidskriftsartikel (refereegranskat)abstract
    • Rechargeable batteries that use organic matter as. the capacity-carrying material have previously been considered a technology for the future. Earlier batteries in which both the anode and cathode consisted of organic material required significant amounts of conductive additives and were often based on metal-ion electrolytes containing Li+ or Na+. However, we have used conducting poly(3,4-ethylenedioxythiophene) (PEDOT), functionalized with anthraquinone (PEDQT-AQ) or, benzonquinone (PEDOT-BQ) pendant groups as the negative and positive electrode materials, respectively, to make an all-organic proton battery devoid of metals. The electrolyte consists of a proton donor and acceptor slurry containing substituted pyridinium triflates and the corresponding pyridine base. This slurry allows the 2e(-)/2H(+) quinone/hydroquinone redox reactions while suppressing proton reduction in the battery cell. By using strong (acidic) proton donors, the formal potential of the quinone redox reactions is tuned into the potential region in which the PEDOT backbone is conductive, thus eliminating the need for conducting additives. In this all-organic proton battery cell, PEDOT-AQ and PEDOT-BQ deliver 103 and 120 mAh g(-1), which correspond to 78% and 75%, respectively, of the theoretical specific capacity of the materials at an average cell potential of 0.5 V. We show that PEDOT-BQ determines the cycling stability of the device while PEDOT-AQ provides excellent reversibility for at least 1000 cycles. This proof-of-concept shows the feasibility of assembling all organic proton batteries which require no conductive additives and also reveals where the challenges and opportunities lie on the path to producing plastic batteries.
  •  
4.
  •  
5.
  •  
6.
  • Sjödin, Martin, 1974-, et al. (författare)
  • Conducting Redox Polymers as Electrical Energy Storage Materials
  • 2019
  • Konferensbidrag (refereegranskat)abstract
    • Conducting redox polymers (CRPs) is an attractive alternative as organic matter based electrical energy storage materials as they provide means of combining the favorable charge transport properties of conducting polymers with the high capacity and well defined redox chemistry of small redox active groups. In general CRPs are composed of a conducting polymer backbone where each or some of the monomers building up the polymer is bearing a redox active functional group. Although the working principle of CRPs is straightforward several key criteria need to be met in the CRP design in order to benefit from synergetic effects of the conducting polymer backbone and the pendent group in CRPs that will be outlined in this presentation: 1) As conducting polymers are only conducting in their charged state successful polymer-pendent group combinations rely on that the pendant group has a redox potential within the conducting region of the polymer backbone. This condition is referred to as redox matching and the requirement in the CRP design will be explicitly proven.[1] 2) The purpose of the polymer backbone is to provide efficient electron transport through the material. We have previously shown the polymer conductivity can be severely compromised by the pendant group.[2] This could be overcome by judicious choice of polymer backbone and results will be presented that show that non-activated (semi-metallic) electron transport can be achieved in CRPs.[3-4] 3) A final design principle that will be discussed is related to the polymerizability and how it is affected by the nature of the link between the polymer backbone and the pendent.[5] In addition a novel polymerization method for CRP monomers will be presented that allow bulk processing even for insoluble CRPmaterials.
  •  
7.
  •  
8.
  • Sjödin, Martin, 1974-, et al. (författare)
  • Designing Quinone-based Conducting Redox Polymers specifically for Aqueous Proton Batteries and for Lithium Ion Battery Cathodes
  • 2020
  • Konferensbidrag (refereegranskat)abstract
    •  Conducting redox polymers (CRPs) are conducting polymers that have been decorated with redox active functional groups and they provide an attractive alternative as organic matter based electrical energy storage materials. The purpose of the polymer backbone is two-fold, 1) it prevents dissolution of the redox group and, 2) it renders the material conductive. The redox active pendant groups, on the other hand, provide the material with a well-defined redox reaction as well as a high charge storage capacity. CRPs thus provide a solution to two of the most significant obstacles in achieving powerful and stable battery materials from organic compounds, i.e. materials dissolution and limited electronic conductivity while simultaneously providing a high charge storage capacity. For battery applications it is thus essential that the individual properties of the conducting polymer backbone and the redox group can be preserved and that they operate in synergy in the CRP. One prerequisite for synergetic polymer-pendant combinations is redox matching. As conducting polymers are only conducting in their charged state successful combinations rely on that the pendant group has a redox potential within the conducting region of the polymer backbone. In addition, the CRP must allow mass transport of ions, not only related to the cycling chemistry of the pendant group but also ions related to the doping of the polymer backbone. These requirements put significantly different demands on the polymer design for the development of aqueous proton batteries and for CRPs for lithium cycling cathodes. In this presentation specific CRP design-solutions will be presented that allow for the development of all-organic proton batteries 1,2 and for lithium ion CRP-battery cathodes 3. In addition, a solution-processing method, termed Post Deposition Polymerization (PDP), for CRP-materials and the underlying principles and requirements for PDP will be presented. Importantly, in PDP the processing step occurs prior to polymerization. After depositing and drying of the repeat-unit precursor onto a substrate polymerization is achieved by oxidative polymerization of the precursor. The PDP-method opens up for a scalable method for the coating of CRP materials onto any substrate and can, for instance, be used to make nanostructured CRP materials.1              Emanuelsson, R., Sterby, M., Strømme, M. & Sjödin, M. An All-Organic Proton Battery. J. Am. Chem. Soc. 139, 4828-4834, doi:10.1021/jacs.7b00159 (2017).2              Strietzel, C. et al. Accepted in Angewandte Chemie doi:10.1002/anie.202001191 (2020).3              Wang, H. et al. Redox-State-Dependent Interplay between Pendant Group and Conducting Polymer Backbone in Quinone-Based Conducting Redox Polymers for Lithium Ion Batteries. ACS Applied Energy Materials 2, 7162-7170, doi:10.1021/acsaem.9b01130 (2019).
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Sterby, Mia, 1989-, et al. (författare)
  • Characterization of a PEDOT/Quinone Conducting Redox Polymer
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Organic materials can be used to ensure sustainable electrical energy storage, thus avoiding the use of inorganic materials that are inherently non-renewable and associated with large energy consumptions in their mining and refining. One category of organic energy storage materials consists of conducting redox polymers (CRPs). They include a conducting polymer backbone (CP), a redox active pendant group (PG), and a linker attaching the PG to the CP. The present work involves the CP poly(3,4-ethylenedioxythiophene) (PEDOT) and a quinone PG in acidic water solution. Quinones constitute an attractive class of molecules as they show reversible redox chemistry in several electrolyte systems, possess a high charge storage capacity and are naturally occurring e.g. in the electron transport chains in respiration and in photosynthesis. The CRP studied is characterized by cyclic voltammetry as well as by EQCM, in-situ conductance, and in-situ spectroscopic methods. In this work we present the formal potential of the quinone, the rate constant for electron transport in the polymer, mass changes during electrochemical redox conversion in different potential regions, and conductance data providing support for a CP-mediated electron transport through the material. Based on the results the electron and ion transport during electrochemical redox conversion will be discussed.                                                                                              
  •  
14.
  • Sterby, Mia, 1989-, et al. (författare)
  • Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries
  • 2017
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 235, s. 356-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-ion technologies show great promise to meet the demands that the transition towards renewable energy sources and the electrification of the transport sector put forward. However, concerns regarding lithium-ion batteries, including limited material resources, high energy consumption during production, and flammable electrolytes, necessitate research on alternative technologies for electrochemical energy storage. Organic materials derived from abundant building blocks and with tunable properties, together with water based electrolytes, could provide safe, inexpensive and sustainable alternatives. In this study, two conducting redox polymers based on poly(3,4-ethylenedioxythiophene) (PEDOT) and a hydroquinone pendant group have been synthesized and characterized in an acidic aqueous electrolyte. The polymers were characterized with regards to kinetics, pH dependence, and mass changes during oxidation and reduction, as well as their conductance. Both polymers show redox matching, i.e. the quinone redox reaction occurs within the potential region where the polymer is conducting, and fast redox conversion that involves proton cycling during pendant group redox conversion. These properties make the presented materials promising candidates as electrode materials for water based all-organic batteries.
  •  
15.
  • Sterby, Mia, 1989-, et al. (författare)
  • Electrochemical Characterization of Conducting Redox Polymers – Redox Matching and Mass Transport
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • In order to provide society with sustainable electrical energy storage technologies, organic based batteries is an attractive target. Making batteries with materials from renewable resources would ensure production without the use of non-renewable inorganic materials that have to be acquired through energy consuming mining. To ensure sufficient conductivity, most organic batteries researched on today use conducting additives since organic molecules, in general, are insulating. A different approach is to use conducting redox polymers (CRPs). They utilize a conducting polymer as a backbone for good conductivity and redox active pendant groups to ensure high charge storage capacity and a well-defined redox process. The polymer backbone used in the present work is poly(3,4-ethylenedioxythiophene) while quinones are used as pendant groups. In an all-organic battery the two electrodes will have quinones with different redox potentials, resulting in a voltage difference between the electrodes. This work focuses on characterizing the cathode material in water electrolytes. The CRPs are studied with regard to conductivity and mass transport, by in situ conductance as well as electrochemical quartz crystal microbalance experiments. Redox matching between the conducting polymer and the pendant group is evident from in situ conductance measurements. From EQCM measurements it is evident that during the hydroquinone/quinone redox conversion only protons are cycled in and out of the CRP.
  •  
16.
  • Sterby, Mia, 1989- (författare)
  • Electrochemical Characterizations of Conducting Redox Polymers : Electron Transport in PEDOT/Quinone Systems
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organic electrode materials for rechargeable batteries have caught increasing attention since they can be used in new innovative applications such as flexible electronics and smart fabrics. They can provide safer and more environmentally friendly devices than traditional batteries made from metals. Conducting polymers constitute an interesting class of organic electrode materials that have been thoroughly studied for battery applications. They have high conductivity but are heavy relative to their energy storage ability and will hence form batteries with low weight capacity. Quinones, on the other hand, are low weight molecules that participate in electron transport in both animals and plants. They could provide batteries with high capacity but are easily dissolved in the electrolyte and have low conductivity. These two constituents can be combined into a conducting redox polymer that has both high conductivity and high capacity. In the present work, the conducting polymer PEDOT and the simplest quinone, benzoquinone, are covalently attached and form the conducting redox polymer used for most studies in this thesis. The charge transport mechanism is investigated by in situ conductivity measurements and is found to mainly be governed by band transport. Other properties such as packing, kinetics, mass changes, and spectral changes are also studied. A polymerization technique is also analyzed, that allows for polymerization from a deposited layer. Lastly, two different types of batteries using conducting redox polymers are constructed. The thesis gives insight into the fundamental properties of conducting redox polymers and paves the way for the future of organic electronics.
  •  
17.
  • Sterby, Mia, 1989-, et al. (författare)
  • Electrochemical Properties of a PEDOT-Based Conducting Redox Polymer
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • Organic molecules are generally insulating and to ensure electrical conductivity when organic matter is used as electrode materials, conducting additives are commonly used. Another approach is to use conducting polymers as a backbone to which the capacity carrying redox active pendant groups are attached. In this work we employed poly(3,4-ethylenedioxythiophene) (PEDOT) with different quinone moieties as pendant groups, forming conducting redox polymers (CRPs). By using quinones with different redox potentials, CRPs can be used as electrode materials in all-organic batteries where the difference in formal potential between the quinone redox reactions determines the cell-potential of the battery. To avoid the use of flammable and harmful organic electrolytes we used acidic water based electrolytes in the characterization of these polymers, including in situ conductance, electrochemical quartz crystal microbalance measurements, and cyclic voltammetry. The results from polymers carrying different quinones will be presented. For example: in situ conductance measurements of benzoquinone substituted CRPs show that redox matching is evident, i.e. the quinone pendant group has its redox reaction occurring in a potential window where the polymer is conducting (Figure 1). The polymers also show fast kinetics and during the quinone redox conversion only protons seem to be cycled in and out of the CRPs.
  •  
18.
  • Sterby, Mia, 1989-, et al. (författare)
  • Electronic properties of a PEDOT/Quinone Conducting Redox Polymer
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Organic materials can be used to ensure sustainable electrical energy storage, thus avoiding the use of inorganic materials that are inherently non-renewable and associated with large energy consumptions in their mining and refining. To ensure sufficient conductivity, most organic batteries researched on today use conducting additives since organic molecules, in general, are insulating. A different approach is to use conducting redox polymers (CRPs). CRPs consist of a redox active pendant group attached to a conducting polymer backbone. The present work focuses on characterizing a cathode material for water based batteries. The material consists of the well-studied conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with a quinone pendant group, a combination that we have proven can work in an all-organic proton battery.1 Quinones constitute an attractive class of molecules as they possess a high charge storage capacity, show reversible redox chemistry, and are naturally occurring, e.g., in the electron transport chains in photosynthesis and in respiration. Redox matching (i.e. the redox reaction of the pendant group occurring at a potential where the polymer is conducting) between the conducting polymer and the pendant group is crucial for CRPs since the electrons stored in the pendant groups have to travel through the polymer to the current collector. From in situ conductance measurements we have previously shown that redox matching exists in the studied CRP.2 In this work we present studies of the redox matched CRP showing a non-activated electron transport through the polymer backbone, an activated process for the quinone redox conversion, and indication of polarons being the dominant charge carrier. The reorganization energy of the quinone as well as ion mobility through the polymer will also be discussed.     1. Emanuelsson, R.; Sterby, M.; Strømme, M.; Sjödin, M., An All-Organic Proton Battery. J. Am. Chem. Soc. 2017, 139 (13), 4828-4834.2. Sterby, M.; Emanuelsson, R.; Huang, X.; Gogoll, A.; Strømme, M.; Sjödin, M., Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries. Electrochim. Acta 2017, 235, 356–364.
  •  
19.
  • Sterby, Mia, 1989-, et al. (författare)
  • In Situ Methods for Understanding Charge Transport in a Conducting Redox Polymer
  • 2018
  • Ingår i: Materials Research Society. Fall meeting 2018. Boston. - Boston.
  • Konferensbidrag (refereegranskat)abstract
    • Organic materials can be used to ensure sustainable electrical energy storage, but since organic molecules are generally insulating conducting additives are commonly used to ensure electrical conductivity throughout the material. A different approach is to use conducting redox polymers (CRPs). CRPs consist of a redox active pendant group, used for its high capacity, attached to a conducting polymer backbone. The CRP presented here is aimed to be used as the positive electrode in a water-based organic battery. In this work we employ the well-studied conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with a quinone pendant group, a combination that we have proven can work in an all-organic proton battery.1 Quinones constitute an attractive class of molecules as they possess a high charge storage capacity, show reversible redox chemistry, and are naturally occurring, e.g., in the electron transport chains in respiration and in photosynthesis. The aim of the study is to understand the charge transport properties of the CRP. The CRP studied is characterized by various in-situ electrochemical methods including conductance, Quartz Crystal Microbalance (QCM), UV-vis and Electron Paramagnetic Resonance (EPR). Based on the results the electron and ion transport during electrochemical redox conversion will be discussed. 1. Emanuelsson, R.; Sterby, M.; Strømme, M.; Sjödin, M., An All-Organic Proton Battery. J. Am. Chem. Soc. 2017, 139 (13), 4828-4834.
  •  
20.
  • Sterby, Mia, 1989-, et al. (författare)
  • Investigating electron transport in a PEDOT/Quinone conducting redox polymer with in situ methods
  • 2019
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 308, s. 277-284
  • Tidskriftsartikel (refereegranskat)abstract
    • A conducting redox polymer is investigated in acidic electrolyte using various in situ methods, including electron paramagnetic resonance (EPR), UV–vis spectroscopy, and conductance measurements. The quinone redox active pendant group has a formal potential of 0.67 V (vs. standard hydrogen electrode) where a 2e2H process occurs. By analyzing the rate constant at different temperatures, the rate-limiting step in the redox reaction was found to be a thermally activated process with an activation energy of 0.3 eV. The electron transport through the conducting polymerwas found to be non-thermally activated and, hence, not redox rate-limiting. This is also the first time a negative temperature dependence has been reported for a conducting redox polymer in the same potential region where the redox active pendant group has its formal potential. EPR and conductance data indicated that the conductivity is governed by both polarons and bipolarons but their ratio is shifting during oxidation and reduction of the polymer.
  •  
21.
  • Sterby, Mia, 1989-, et al. (författare)
  • Linker Effect in PEDOT/Quinone Organic Battery Materials
  • 2016
  • Konferensbidrag (refereegranskat)abstract
    • One way to ensure sustainable electrical energy storage is to use organic materials. Organic materials can be made from renewable resources and thus the use of limited resources needed for inorganic materials is avoided. Conducting redox polymers (CRPs) are one type of organic material that can be used in e.g. batteries. CRPs consist of a conducting polymer backbone, a redox active pendant group, and a linker connecting the pendant group to the polymer. The present work focuses on the well-studied conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with quinone pendant groups in water based systems. Quinones constitute a class of redox active molecules used in nature e.g. for electron transport in photosynthesis and in respiration. Although the third unit, the linker, is a passive part in the system it can greatly impact the behavior of the resulting CRP. In this report we present scan rate dependent voltammetric data as well as EQCM and in-situ conductance on two CRPs differing only by two CH2 groups in the linker. Figure 1 shows molecular structure, CV, and EQCM data of I and II indicating the significant influence that the minor difference in the linking unit has on the redox chemistry in these systems.
  •  
22.
  • Sterby, Mia, 1989-, et al. (författare)
  • Post-Deposition Polymerization : A Method for Circumventing Processing of Insoluble Conducting Polymers
  • Annan publikation (populärvet., debatt m.m.)abstract
    • A method, termed post-deposition polymerization, for the synthesis of conducting polymers is presented, which enables solid state polymerization of oligomeric layers by oxidative polymerization. The method was developed as a general tool for the preparation of conducting polymer layers that allows for industrially viable solution-processing methods to be used for substrate coating. We use trimer building blocks based on 3,4-ethylenedioxythiophene (EDOT) in the processing step, and show that the resulting trimer layer has innate conductivity when oxidized, which presumably is instrumental for successful polymerization of the solid layer. As judged by in situ conductance measurement during oxidative polymerization of the trimer layer, the layer-conductivity is greatly increased as a result of polymerization. Successful solid state polymerization was also confirmed by the irreversible spectral changes, monitored in-situ during polymerization, resulting in signature spectral transitions of conducting polymers from an initial spectrum derived solely from trimer absorption. From the in situ determined mass changes we estimate the swelling during post-deposition polymerization as well as the average polymer length. Electrochemical characterization of the resulting polymer show fast redox conversion as well as non-activated electron transport through the material indicating that the post-deposition polymerization-generated polymer indeed show promising properties. We believe that the post-deposition polymerization method will enable investigations, currently hampered by limited processability, of interesting families of conducting polymer materials.
  •  
23.
  • Strietzel, Christian, et al. (författare)
  • An Aqueous Conducting Redox-Polymer-Based Proton Battery that Can Withstand Rapid Constant-Voltage Charging and Sub-Zero Temperatures
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:24, s. 9631-9638
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrodes based on organic matter operating in aqueous electrolytes enable new approaches and technologies for assembling and utilizing batteries that are difficult to achieve with traditional electrode materials. Here, we report how thiophene‐based trimeric structures with naphthoquinone or hydroquinone redox‐active pendent groups can be processed in solution, deposited, dried and subsequently polymerized in solid state to form conductive (redox) polymer layers without any additives. Such post‐deposition polymerization offers efficient use of material, high mass loading (up to 10 mg cm−2) and good flexibility in the choice of substrate and coating method. By employing these materials as anode and cathode in an acidic aqueous electrolyte a rocking‐chair proton battery is built. The battery shows good cycling stability (85 % after 500 cycles), withstands rapid charging, with full capacity (60 mAh g−1) reached within 100 seconds, allows for direct integration with photovoltaics, and retains its favorable characteristics even at −24 °C.
  •  
24.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy