SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stevenson Bradley S.) "

Sökning: WFRF:(Stevenson Bradley S.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Leisawitz, David, et al. (författare)
  • The origins space telescope
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
4.
  • Leisawitz, David, et al. (författare)
  • The Origins Space Telescope: Mission concept overview
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • Downloading of the abstract is permitted for personal use only. The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
  •  
5.
  • Leisawitz, David, et al. (författare)
  • Origins Space Telescope: Baseline mission concept
  • 2021
  • Ingår i: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural background-limited sensitivity.
  •  
6.
  • Ferguson, Grant, et al. (författare)
  • Acceleration of Deep Subsurface Fluid Fluxes in the Anthropocene
  • 2024
  • Ingår i: Earth's Future. - : John Wiley & Sons. - 2328-4277. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Anthropocene has been framed around humanity's impact on atmospheric, biologic, and near-surface processes, such as land use and vegetation change, greenhouse gas emissions, and the above-ground hydrologic cycle. Groundwater extraction has lowered water tables in many key aquifers but comparatively little attention has been given to the impacts in the deeper subsurface. Here, we show that fluid fluxes from the extraction and injection of fluids associated with oil and gas production and inflow of water into mines likely exceed background flow rates in deep (>500 m) groundwater systems at a global scale. Projected carbon capture and sequestration (CCS), geothermal energy production, and lithium extraction to facilitate the energy transition will require fluid production rates exceeding current oil and co-produced water extraction. Natural analogs and geochemical modeling indicate that subsurface fluid manipulation in the Anthropocene will likely appear in the rock record. The magnitude and importance of these changes are unclear, due to a lack of understanding of how deep subsurface hydrologic and geochemical cycles and associated microbial life interact with the rest of the Earth system.
  •  
7.
  • Stevenson, Bradley S, et al. (författare)
  • Hoeflea anabaenae sp. nov., an epiphytic symbiont that attaches to the heterocysts of a strain of Anabaena.
  • 2011
  • Ingår i: International journal of systematic and evolutionary microbiology. - : Microbiology Society. - 1466-5034 .- 1466-5026. ; 61:10, s. 2439-2444
  • Tidskriftsartikel (refereegranskat)abstract
    • The heterotrophic, epiphytic symbiotic bacterial strain WH2K(T) was previously isolated from a two-member culture in which it was attached to the heterocysts of a strain of Anabaena (SSM-00). Analysis of its 16S rRNA genes demonstrated that the symbiont was most closely related to the type strain of Hoeflea marina (96.9% similarity), which belongs to the family Phyllobacteriaceae within the order Rhizobiales of the class Alphaproteobacteria. A polyphasic taxonomic study was performed on strain WH2K(T) that consisted of irregular rods (2-5μm long, 0.2μm wide) that appeared to be narrower at one polar end. Optimal growth was obtained in complex media with 15 g l(-1) sea salts, at 18-34 °C (30 °C optimum) and at pH values in the range of 6.0-8.0 (6.5 optimum). Unknown growth requirements were provided by small amounts of yeast extract but not standard vitamin and trace metal solutions. Of the substrates tested, WH2K(T) was only able to utilize acetate, pyruvate, malate, and fumarate. Growth was only observed under aerobic and microaerobic conditions and nitrate was not reduced. No photosynthetic pigments were detected under any of the growth conditions tested. The predominant fatty acids were present in a summed feature that comprises C (18:1) ω7c, / 9t /12t or any combination of these (64.0%) and an unidentified fatty acid of estimated chain length (ECL of C(17.6) (13.5%), The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphoglycolipid, unknown lipids and an unidentified aminolipid. The only respiratory ubiquinone detected was Q-10. The DNA %G+C content of the strain is 58.1%. The organism can form a site-specific attached symbiotic relationship with a species of Anabaena. Based on phylogenetic and phenotypic evidence it is proposed that strain WH2K(T) be classified as a fourth species of the genus Hoeflea, for which the name Hoeflea anabaenae sp. nov. is proposed. The type strain of Hoeflea anabaenae sp. nov. is WH2K(T) (=CCUG 56626(T) =NRRL B-59520(T)).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy