SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stingl Julia) "

Sökning: WFRF:(Stingl Julia)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mathey, Carina M, et al. (författare)
  • Molecular Genetic Screening in Patients With ACE Inhibitor/Angiotensin Receptor Blocker-Induced Angioedema to Explore the Role of Hereditary Angioedema Genes
  • 2022
  • Ingår i: Frontiers in Genetics. - : Frontiers Media S.A.. - 1664-8021. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Angioedema is a relatively rare but potentially life-threatening adverse reaction to angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs). As with hereditary forms of angioedema (HAE), this adverse reaction is mediated by bradykinin. Research suggests that ACEi/ARB-induced angioedema has a multifactorial etiology. In addition, recent case reports suggest that some ACEi/ARB-induced angioedema patients may carry pathogenic HAE variants. The aim of the present study was to investigate the possible association between ACEi/ARB-induced angioedema and HAE genes via systematic molecular genetic screening in a large cohort of ACEi/ARB-induced angioedema cases. Targeted re-sequencing of five HAE-associated genes (SERPING1, F12, PLG, ANGPT1, and KNG1) was performed in 212 ACEi/ARB-induced angioedema patients recruited in Germany/Austria, Sweden, and Denmark, and in 352 controls from a German cohort. Among patients, none of the identified variants represented a known pathogenic variant for HAE. Moreover, no significant association with ACEi/ARB-induced angioedema was found for any of the identified common [minor allele frequency (MAF) >5%] or rare (MAF < 5%) variants. However, several non-significant trends suggestive of possible protective effects were observed. The lowest p-value for an individual variant was found in PLG (rs4252129, p.R523W, p = 0.057, p.adjust > 0.999, Fisher's exact test). Variant p.R523W was found exclusively in controls and has previously been associated with decreased levels of plasminogen, a precursor of plasmin which is part of a pathway directly involved in bradykinin production. In addition, rare, potentially functional variants (MAF < 5%, Phred-scaled combined annotation dependent depletion score >10) showed a nominally significant enrichment in controls both: 1) across all five genes; and 2) in the F12 gene alone. However, these results did not withstand correction for multiple testing. In conclusion, our results suggest that HAE-associated mutations are, at best, a rare cause of ACEi/ARB-induced angioedema. Furthermore, we were unable to identify a significant association between ACEi/ARB-induced angioedema and other variants in the investigated genes. Further studies with larger sample sizes are warranted to draw more definite conclusions concerning variants with limited effect sizes, including protective variants.
  •  
2.
  • Dawed, Adem Y., et al. (författare)
  • Variation in the plasma membrane monoamine transporter (PMAT) (encoded by SLC29A4) and organic cation transporter 1 (OCT1) (encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes : An IMI direct study
  • 2019
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 42:6, s. 1027-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Gastrointestinal adverse effects occur in 20–30% of patients with metformin-treated type 2 diabetes, leading to premature discontinuation in 5–10% of the cases. Gastrointestinal intolerance may reflect localized high concentrations of metformin in the gut. We hypothesized that reduced transport of metformin via the plasma membrane monoamine transporter (PMAT) and organic cation transporter 1 (OCT1) could increase the risk of severe gastrointestinal adverse effects. RESEARCH DESIGN AND METHODS The study included 286 severe metformin-intolerant and 1,128 metformin-tolerant individuals from the IMI DIRECT (Innovative Medicines Initiative: DIabetes REsearCh on patient straTification) consortium. We assessed the association of patient characteristics, concomitant medication, and the burden of mutations in the SLC29A4 and SLC22A1 genes on odds of intolerance. RESULTS Women (P < 0.001) and older people (P < 0.001) were more likely to develop metformin intolerance. Concomitant use of transporter-inhibiting drugs increased the odds of intolerance (odds ratio [OR] 1.72, P < 0.001). In an adjusted logistic regression model, the G allele at rs3889348 (SLC29A4) was associated with gastrointestinal intolerance (OR 1.34, P = 0.005). rs3889348 is the top cis-expression quantitative trait locus for SLC29A4 in gut tissue where carriers of the G allele had reduced expression. Homozygous carriers of the G allele treated with transporter-inhibiting drugs had more than three times higher odds of intolerance compared with carriers of no G allele and not treated with inhibiting drugs (OR 3.23, P < 0.001). Use of a genetic risk score derived from rs3889348 and SLC22A1 variants found that the odds of intolerance were more than twice as high in individuals who carry three or more risk alleles compared with those carrying none (OR 2.15, P = 0.01). CONCLUSIONS These results suggest that intestinal metformin transporters and concomitant medications play an important role in the gastrointestinal adverse effects of metformin.
  •  
3.
  • Swen, JesseJ, et al. (författare)
  • A 12-gene pharmacogenetic panel to prevent adverse drug reactions : an open-label, multicentre, controlled, cluster-randomised crossover implementation study
  • 2023
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 401:10374, s. 347-356
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene-drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed.Methods: We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug-gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug-gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug-gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants.Findings: Between March 7, 2017, and June 30, 2020, 41 696 patients were assessed for eligibility and 6944 (51.4 % female, 48.6% male; 97.7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1.6%] of the study group and 47 [1.3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11.0%] in the study group and 285 [7.9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21 center dot 0%) of 725 patients in the study group and 231 (27.7%) of 833 patients in the control group (odds ratio [OR] 0 center dot 70 [95% CI 0 center dot 54-0 center dot 91]; p=0.0075), whereas for all patients, the incidence was 628 (21.5%) of 2923 patients in the study group and 934 (28. 6%) of 3270 patients in the control group (OR 0.70 [95% CI 0.61-0.79]; p <0.0001).Interpretation: Genotype-guided treatment using a 12-gene pharmacogenetic panel significantly reduced the incidence of clinically relevant adverse drug reactions and was feasible across diverse European health-care system organisations and settings. Large-scale implementation could help to make drug therapy increasingly safe.
  •  
4.
  • van der Wouden, Cathelijne H., et al. (författare)
  • Generating evidence for precision medicine : considerations made by the Ubiquitous Pharmacogenomics Consortium when designing and operationalizing the PREPARE study
  • 2020
  • Ingår i: Pharmacogenetics & Genomics. - 1744-6872 .- 1744-6880. ; 30:6, s. 131-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Pharmacogenetic panel-based testing represents a new model for precision medicine. A sufficiently powered prospective study assessing the (cost-)effectiveness of a panel-based pharmacogenomics approach to guide pharmacotherapy is lacking. Therefore, the Ubiquitous Pharmacogenomics Consortium initiated the PREemptive Pharmacogenomic testing for prevention of Adverse drug Reactions (PREPARE) study. Here, we provide an overview of considerations made to mitigate multiple methodological challenges that emerged during the design.Methods An evaluation of considerations made when designing the PREPARE study across six domains: study aims and design, primary endpoint definition and collection of adverse drug events, inclusion and exclusion criteria, target population, pharmacogenomics intervention strategy, and statistical analyses.Results Challenges and respective solutions included: (1) defining and operationalizing a composite primary endpoint enabling measurement of the anticipated effect, by including only severe, causal, and drug genotype-associated adverse drug reactions; (2) avoiding overrepresentation of frequently prescribed drugs within the patient sample while maintaining external validity, by capping drugs of enrolment; (3) designing the pharmacogenomics intervention strategy to be applicable across ethnicities and healthcare settings; and (4) designing a statistical analysis plan to avoid dilution of effect by initially excluding patients without a gene–drug interaction in a gatekeeping analysis.Conclusion Our design considerations will enable quantification of the collective clinical utility of a panel of pharmacogenomics-markers within one trial as a proof-of-concept for pharmacogenomics-guided pharmacotherapy across multiple actionable gene–drug interactions. These considerations may prove useful to other investigators aiming to generate evidence for precision medicine.
  •  
5.
  • Verhoef, Talitha I, et al. (författare)
  • Cost-effectiveness of pharmacogenetics in anticoagulation: international differences in healthcare systems and costs
  • 2012
  • Ingår i: Pharmacogenomics (London). - : Future Medicine. - 1462-2416 .- 1744-8042. ; 13:12, s. 1405-1417
  • Forskningsöversikt (refereegranskat)abstract
    • Genotyping patients for CYP2C9 and VKORC1 polymorphisms can improve the accuracy of dosing during the initiation of anticoagulation with vitamin K antagonists (coumarin derivatives). The anticipated degree of improvement in the safety of anticoagulation with coumarins through genotyping may vary depending on the quality of patient care, which varies both with and among countries. The management and the cost of anticoagulant care can therefore influence the cost effectiveness of genotyping within any given country. In this article, we provide an overview of the cost effectiveness of pharmacogenetics-guided dosing of coumarin derivatives. We describe the organization of anticoagulant care in the UK, Sweden, The Netherlands, Greece, Germany and Austria, where a genotype-guided dosing algorithm is currently being investigated as part of the EU-PACT trial. We also explore the costs of anticoagulant care for the treatment of atrial fibrillation in these countries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy