SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stipkova Zuzana) "

Sökning: WFRF:(Stipkova Zuzana)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shefferson, Richard P., et al. (författare)
  • Drivers of vegetative dormancy across herbaceous perennial plant species
  • 2018
  • Ingår i: Ecology Letters. - : WILEY. - 1461-023X .- 1461-0248. ; 21:5, s. 724-733
  • Tidskriftsartikel (refereegranskat)abstract
    • Vegetative dormancy, that is the temporary absence of aboveground growth for 1year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.
  •  
2.
  • Travnicek, Pavel, et al. (författare)
  • Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity
  • 2012
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 110:5, s. 977-986
  • Tidskriftsartikel (refereegranskat)abstract
    • Patterns of ploidy variation among and within populations can provide valuable insights into the evolutionary mechanisms shaping the dynamics of plant systems showing ploidy diversity. Whereas data on majority ploidies are, by definition, often sufficiently extensive, much less is known about the incidence and evolutionary role of minority cytotypes. Ploidy and proportions of endoreplicated genome were determined using DAPI (4,6-diamidino-2-phenylindole) flow cytometry in 6150 Gymnadenia plants (fragrant orchids) collected from 141 populations in 17 European countries. All widely recognized European species, and several taxa of less certain taxonomic status were sampled within Gymnadenia conopsea sensu lato. Most Gymnadenia populations were taxonomically and/or ploidy heterogeneous. Two majority (2x and 4x) and three minority (3x, 5x and 6x) cytotypes were identified. Evolution largely proceeded at the diploid level, whereas tetraploids were much more geographically and taxonomically restricted. Although minority ploidies constituted 2 of the individuals sampled, they were found in 35 of populations across the entire area investigated. The amount of nuclear DNA, together with the level of progressively partial endoreplication, separated all Gymnadenia species currently widely recognized in Europe. Despite their low frequency, minority cytotypes substantially increase intraspecific and intrapopulation ploidy diversity estimates for fragrant orchids. The cytogenetic structure of Gymnadenia populations is remarkably dynamic and shaped by multiple evolutionary mechanisms, including both the ongoing production of unreduced gametes and heteroploid hybridization. Overall, it is likely that the level of ploidy heterogeneity experienced by most plant species/populations is currently underestimated; intensive sampling is necessary to obtain a holistic picture.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy