SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stober F M) "

Sökning: WFRF:(Stober F M)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
4.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
5.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
6.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
7.
  • Labit, B., et al. (författare)
  • Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:8
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Institute of Physics Publishing. All rights reserved. Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.
  •  
8.
  • Stroth, U., et al. (författare)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
9.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
10.
  • Mantsinen, M. J., et al. (författare)
  • Bulk Ion Heating with ICRF Waves in Tokamaks
  • 2015
  • Ingår i: RADIOFREQUENCY POWER IN PLASMAS. - : American Institute of Physics (AIP). - 9780735413368
  • Konferensbidrag (refereegranskat)abstract
    • Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without He-3 minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with He-3 minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T-i from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central He-3 ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/L-Ti of about 20, which are unusually large for AUG plasmas. The large changes in the Ti profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the He-3 concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.
  •  
11.
  • Hobirk, J., et al. (författare)
  • Improved confinement in JET hybrid discharges
  • 2009
  • Ingår i: 36th EPS Conference on Plasma Physics 2009, EPS 2009 - Europhysics Conference Abstracts. - 9781622763368 ; , s. 150-153
  • Konferensbidrag (refereegranskat)
  •  
12.
  • Hobirk, J., et al. (författare)
  • Improved confinement in JET hybrid discharges
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:9, s. 095001-
  • Tidskriftsartikel (refereegranskat)abstract
    • A new technique has been developed to produce plasmas with improved confinement relative to the H 98,y2 scaling law (ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database ITER Physics Basics Editors and ITER EDA 1999 Nucl. Fusion 39 2175) on the JET tokamak. In the mid-size tokamaks ASDEX upgrade and DIII-D heating during the current formation is used to produce a flat q-profile with a minimum close to 1. On JET this technique leads to q-profiles with similar minimum q but opposite to the other tokamaks not to an improved confinement state. By changing the method utilizing a faster current ramp with temporary higher current than in the flattop (current overshoot) plasmas with improved confinement (H 98,y2=1.35) and good stability (β N3) have been produced and extended to many confinement times only limited by technical constraints. The increase in H 98,y2-factor is stronger with more heating power as can be seen in a power scan. The q-profile development during the high power phase in JET is reproduced by current diffusion calculated by TRANSP and CRONOS. Therefore the modifications produced by the current overshoot disappear quickly from the edge but the confinement improvement lasts longer, in some cases up to the end of the heating phase.
  •  
13.
  • Stork, D., et al. (författare)
  • Overview of transport, fast particle and heating and current drive physics using tritium in JET plasmas
  • 2005
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 45:10, s. S181-S194
  • Tidskriftsartikel (refereegranskat)abstract
    • Results are presented from the JET Trace Tritium Experimental (TTE) campaign using minority tritium (T) plasmas (n(T)/n(D) < 3%). Thermal tritium particle transport coefficients (D-T, nu(T)) are found to exceed neo-classical values in all regimes, except in ELMy H-modes at high densities and in the region of internal transport barriers (ITBs) in reversed shear plasmas. In ELMy H-mode dimensionless parameter scans, at q(95) 2.8 and triangularity delta = 0.2, the T particle transport scales in a gyro-Bohm manner in the inner plasma (r/a < 0.4), whilst the outer plasma particle transport scaling is more Bohm-like. Dimensionless parameter scans show contrasting behaviour for the trace particle confinement (increases with collisionality, nu* and beta) and bulk energy confinement (decreases with nu* and is independent of beta). In an extended ELMy H-mode data set, with rho*, nu*, and q varied but with neo-classical tearing modes (NTMs) either absent or limited to weak, benign core modes (4/3 or above), the multiparameter fit to the normalized diffusion coefficient in the outer plasma (0.65 < r/a < 0.8) gives D-T/B-phi similar to rho*(2.46) nu*(-0.23) beta(-1.01) q(2.03). In hybrid scenarios (q(min) similar to 1, low positive shear, no sawteeth), the T particle confinement is found to scale with increasing triangularity and plasma current. Comparing regimes (ELMy H-mode, ITB plasma and hybrid scenarios) in the outer plasma region, a correlation of high values of D-T with high values Of nu(T) is seen. The normalized diffusion coefficients for the hybrid and ITB scenarios do not fit the scaling derived for ELMy H-modes. The normalized tritium diffusion scales with normalized poloidal Larmor radius (rho(theta)* = q rho*) in a manner close to gyro-Bohm (similar to rho(sigma)*(3)), with an added inverse P dependence. The effects of ELMs, sawteeth and NTMs on the T particle transport are described. Fast-ion confinement in current-hole (CH) plasmas was tested in TTE by tritium neutral beam injection into JET CH plasmas. gamma-rays from the reactions of fusion alpha and beryllium impurities (Be-9(alpha, n gamma)C-12) characterized the fast fusion-alpha population evolution. The gamma-decay times are consistent with classical alpha plus parent fast triton slowing down times (tau(Ts) + tau(alpha s)) for high plasma currents (I-p > 2 MA) and monotonic q-profiles. In CH discharges the gamma-ray emission decay times are much lower than classical (tau(Ts) + tau(alpha s)), indicating alpha confinement degradation, due to the orbit losses and particle orbit drift predicted by a 3-D Fokker-Planck numerical code and modelled using TRANSP.
  •  
14.
  • Zastrow, K. D., et al. (författare)
  • Tritium transport experiments on the JET tokamak
  • 2004
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 46, s. B255-B265
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview is given of the experimental method, the analysis technique and the results for trace tritium experiments conducted on the JET tokamak in 2003. Observations associated with events such as sawtooth collapses, neo-classical tearing modes and edge localized modes are described. Tritium transport is seen to approach neo-classical levels in the plasma core at high density and low q(95), and in the transport barrier region of internal transport barrier (ITB) discharges. Tritium transport remains well above neo-classical levels in all other cases. The correlation of the measured tritium diffusion coefficient and convection velocity for normalized minor radii r/a = [0.65, 0.80] with the controllable parameters q95 and plasma density are found to be consistent for all operational regimes (ELMy H-mode discharges with or without ion cyclotron frequency resonance heating, hybrid scenario and ITB discharges). Scaling with local physics parameters is best described by gyro-Bohm scaling with an additional inverse beta dependence.
  •  
15.
  • Monier-Garbet, P, et al. (författare)
  • Impurity-seeded ELMy H-modes in JET, with high density and reduced heat load
  • 2005
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 45:11, s. 1404-1410
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments performed at JET during the past two years show that, in high triangularity H-mode plasmas with I-p = 2.5 MA, n(e)/n(Gr) approximate to 1.0, it is possible to radiate separately up to approximate to 40% of the total injected power on closed flux surfaces in the pedestal region (argon seeding) and up to approximate to 50% of the injected power in the divertor region (nitrogen seeding), while maintaining the confinement improvement factor at the value required for ITER, H98(y, 2) 1.0. The total radiated power fraction achieved in both cases (65-70%) is close to that required for ITER. However, Type I ELMS observed with impurity seeding have the same characteristics as that observed in reference pulses without seeding: decreasing plasma energy loss per ELM with increasing pedestal collisionality. One has to reach the Type III ELM regime to decrease the transient heat load to the divertor to acceptable values for ITER, although at the expense of confinement. The feasibility of an integrated scenario with Type-III ELMS, and q(95) = 2.6 to compensate for the low H factor, has been demonstrated on JET. This scenario would meet ITER requirements at 17 MA provided that the IPB98 scaling for energy content is accurate enough, and provided that a lower dilution is obtained when operating at higher absolute electron density.
  •  
16.
  • Garcia-Munoz, M., et al. (författare)
  • Active control of Alfven eigenmodes in magnetically confined toroidal plasmas
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Alfven waves are electromagnetic perturbations inherent to magnetized plasmas that can be driven unstable by a free energy associated with gradients in the energetic particles' distribution function. The energetic particles with velocities comparable to the Alfven velocity may excite Alfven instabilities via resonant wave-particle energy and momentum exchange. Burning plasmas with large population of fusion born super-Alfvenic alpha particles in magnetically confined fusion devices are prone to excite weakly-damped Alfven eigenmodes (AEs) that, if allowed to grow unabated, can cause a degradation of fusion performance and loss of energetic ions through a secular radial transport. In order to control the fast-ion distribution and associated Alfvenic activity, the fusion community is currently searching for external actuators that can control AEs and energetic ions in the harsh environment of a fusion reactor. Most promising control techniques are based on (i) variable fast-ion sources to modify gradients in the energetic particles' distribution, (ii) localized electron cyclotron resonance heating to affect the fast-ion slowing-down distribution, (iii) localized electron cyclotron current drive to modify the equilibrium magnetic helicity and thus the AE existence criteria and damping mechanisms, and (iv) externally applied 3D perturbative fields to manipulate the fast-ion distribution and thus the wave drive. Advanced simulations help to identify the key physics mechanisms underlying the observed AE mitigation and suppression and thus to develop robust control techniques towards future burning plasmas.
  •  
17.
  • Graham, Jesse R., et al. (författare)
  • The pipeline project: Pre-publication independent replications of a single laboratory's research pipeline
  • 2016
  • Ingår i: Journal of Experimental Social Psychology. - : Elsevier. - 1096-0465 .- 0022-1031. ; 66, s. 55-67
  • Tidskriftsartikel (refereegranskat)abstract
    • This crowdsourced project introduces a collaborative approach to improving the reproducibility of scientific research, in which findings are replicated in qualified independent laboratories before (rather than after) they are published. Our goal is to establish a non-adversarial replication process with highly informative final results. To illustrate the Pre-Publication Independent Replication (PPIR) approach, 25 research groups conducted replications of all ten moral judgment effects which the last author and his collaborators had “in the pipeline” as of August 2014. Six findings replicated according to all replication criteria, one finding replicated but with a significantly smaller effect size than the original, one finding replicated consistently in the original culture but not outside of it, and two findings failed to find support. In total, 40% of the original findings failed at least one major replication criterion. Potential ways to implement and incentivize pre-publication independent replication on a large scale are discussed.
  •  
18.
  • Washburn, Anthony N., et al. (författare)
  • Data from a pre-publication independent replication initiative examining ten moral judgement effects
  • 2016
  • Ingår i: Scientific Data. - : Nature Research (part of Springer Nature): Fully open access journals / Nature Publishing Group. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the data from a crowdsourced project seeking to replicate findings in  independent laboratories before (rather than after) they are published. In this Pre-Publication Independent Replication (PPIR) initiative, 25 research groups attempted to replicate 10 moral judgment effects from a single laboratory's research pipeline of unpublished findings. The 10 effects were investigated using online/lab surveys containing psychological manipulations (vignettes) followed by questionnaires.
  •  
19.
  •  
20.
  • Schweinzer, J., et al. (författare)
  • Development of the Q = 10 scenario for ITER on ASDEX Upgrade (AUG)
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 56:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of the baseline H-mode scenario foreseen for ITER on the ASDEX Upgrade tokamak, i.e. discharges at q 95 = 3, relatively low β N ∼ 1.8, high normalized density n/n GW ∼ 0.85 and high triangularity δ = 0.4, focused on the integration of elements foreseen for ITER and available on ASDEX Upgrade, such as ELM mitigation techniques and impurity seeding in combination with a metallic wall. Values for density and energy confinement simultaneously came close to the requirements of the ITER baseline scenario as long as β N stayed above 2. At lower heating power and thus lower β N normalized energy confinement H 98y2 ∼ 0.85 is obtained. It has been found that stationary discharges are not easily achieved under these conditions due to the low natural ELM frequency occurring at the low q 95/high δ operational point. Up until now the ELM parameters were uncontrollable with the tools developed in other scenarios. Therefore studies on an alternative operational point at higher β N and q 95 have been conducted. In order to prepare for the ITER first non-activation operational phase, Helium operation has been investigated as well.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy