SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stolker J. M.) "

Sökning: WFRF:(Stolker J. M.)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keppler, M., et al. (författare)
  • Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes.Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.Results. We detect a point source within the gap of the disk at about 195 mas (similar to 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of similar to 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than similar to 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models.
  •  
2.
  • Lacour, S., et al. (författare)
  • The mass of β Pictoris c from β Pictoris b orbital motion
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to demonstrate that the presence and mass of an exoplanet can now be effectively derived from the astrometry of another exoplanet.Methods. We combined previous astrometry of β Pictoris b with a new set of observations from the GRAVITY interferometer. The orbital motion of β Pictoris b is fit using Markov chain Monte Carlo simulations in Jacobi coordinates. The inner planet, β Pictoris c, was also reobserved at a separation of 96 mas, confirming the previous orbital estimations.Results. From the astrometry of planet b only, we can (i) detect the presence of β Pictoris c and (ii) constrain its mass to 10.04(-3.10)(+4.53) M-Jup. If one adds the astrometry of β Pictoris c, the mass is narrowed down to 9.15(-1.06)(+1.08) M-Jup. The inclusion of radial velocity measurements does not affect the orbital parameters significantly, but it does slightly decrease the mass estimate to 8.89(-0.75)(+0.75) M-Jup. With a semimajor axis of 2.68 +/- 0.02 au, a period of 1221 +/- 15 days, and an eccentricity of 0.32 +/- 0.02, the orbital parameters of β Pictoris c are now constrained as precisely as those of β Pictoris b. The orbital configuration is compatible with a high-order mean-motion resonance (7:1). The impact of the resonance on the planets' dynamics would then be negligible with respect to the secular perturbations, which might have played an important role in the eccentricity excitation of the outer planet.
  •  
3.
  • Lagrange, A. M., et al. (författare)
  • Unveiling the beta Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nearby and young beta Pictoris system hosts a well resolved disk, a directly imaged massive giant planet orbiting at similar or equal to 9 au, as well as an inner planet orbiting at similar or equal to 2.7 au, which was recently detected through radial velocity (RV). As such, it offers several unique opportunities for detailed studies of planetary system formation and early evolution.Aims. We aim to further constrain the orbital and physical properties of beta Pictoris b and c using a combination of high contrast imaging, long base-line interferometry, and RV data. We also predict the closest approaches or the transit times of both planets, and we constrain the presence of additional planets in the system.Methods. We obtained six additional epochs of SPHERE data, six additional epochs of GRAVITY data, and five additional epochs of RV data. We combined these various types of data in a single Markov-chain Monte Carlo analysis to constrain the orbital parameters and masses of the two planets simultaneously. The analysis takes into account the gravitational influence of both planets on the star and hence their relative astrometry. Secondly, we used the RV and high contrast imaging data to derive the probabilities of presence of additional planets throughout the disk, and we tested the impact of absolute astrometry.Results. The orbital properties of both planets are constrained with a semi-major axis of 9.8 0.4 au and 2.7 +/- 0.02 au for b and c, respectively, and eccentricities of 0.09 +/- 0.1 and 0.27 +/- 0.07, assuming the HIPPARCOS distance. We note that despite these low fitting error bars, the eccentricity of beta Pictoris c might still be over-estimated. If no prior is provided on the mass of beta Pictoris b, we obtain a very low value that is inconsistent with what is derived from brightness-mass models. When we set an evolutionary model motivated prior to the mass of beta Pictoris b, we find a solution in the 10-11 M-Jup range. Conversely, beta Pictoris c's mass is well constrained, at 7.8 +/- 0.4 M-Jup, assuming both planets are on coplanar orbits. These values depend on the assumptions on the distance of the beta Pictoris system. The absolute astrometry HIPPARCOS-Gaia data are consistent with the solutions presented here at the 2 sigma level, but these solutions are fully driven by the relative astrometry plus RV data. Finally, we derive unprecedented limits on the presence of additional planets in the disk. We can now exclude the presence of planets that are more massive than about 2.5 M-Jup closer than 3 au, and more massive than 3.5 M-Jup between 3 and 7.5 au. Beyond 7.5 au, we exclude the presence of planets that are more massive than 1-2 M-Jup.Conclusions. Combining relative astrometry and RVs allows one to precisely constrain the orbital parameters of both planets and to give lower limits to potential additional planets throughout the disk. The mass of beta Pictoris c is also well constrained, while additional RV data with appropriate observing strategies are required to properly constrain the mass of beta Pictoris b.
  •  
4.
  • Bonavita, M., et al. (författare)
  • New binaries from the SHINE survey
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the multiple stellar systems observed within the SpHere INfrared survey for Exoplanet (SHINE). SHINE searched for sub-stellar companions to young stars using high contrast imaging. Although stars with known stellar companions within the SPHERE field of view (< 5.5 arcsec) were removed from the original target list, we detected additional stellar companions to 78 of the 463 SHINE targets observed so far. Twenty-seven per cent of the systems have three or more components. Given the heterogeneity of the sample in terms of observing conditions and strategy, tailored routines were used for data reduction and analysis, some of which were specifically designed for these datasets. We then combined SPHERE data with literature and archival data, TESS light curves, and Gaia parallaxes and proper motions for an accurate characterisation of the systems. Combining all data, we were able to constrain the orbits of 25 systems. We carefully assessed the completeness of our sample for separations between 50–500 mas (corresponding to periods of a few years to a few decades), taking into account the initial selection biases and recovering part of the systems excluded from the original list due to their multiplicity. This allowed us to compare the binary frequency for our sample with previous studies and highlight interesting trends in the mass ratio and period distribution. We also found that, when such an estimate was possible, the values of the masses derived from dynamical arguments were in good agreement with the model predictions. Stellar and orbital spins appear fairly well aligned for the 12 stars that have enough data, which favours a disk fragmentation origin. Our results highlight the importance of combining different techniques when tackling complex problems such as the formation of binaries and show how large samples can be useful for more than one purpose.
  •  
5.
  • Gratton, R., et al. (författare)
  • Investigating three Sirius-like systems with SPHERE
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Sirius-like systems are relatively wide binaries with a separation from a few to hundreds of au; they are composed of a white dwarf (WD) and a companion of a spectral type earlier than M0. Here we consider main sequence (MS) companions, where the WD progenitor evolves in isolation, but its wind during the former asymptotic giant branch (AGB) phase pollutes the companion surface and transfers some angular momentum. They are rich laboratories to constrain stellar models and binary evolution.Aims. Within the SpHere INfrared survey for Exoplanet survey that uses the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument at the Very Large Telescope, our goal is to acquire high contrast multi-epoch observations of three Sirius-like systems, HD 2133, HD 114174, and CD-56 7708 and to combine this data with archive high resolution spectra of the primaries, TESS archive, and literature data.Methods. These WDs are easy targets for SPHERE and were used as spectrophotometric standards. We performed very accurate abundance analyses for the MS stars using methods considered for solar analogs. Whenever possible, WD parameters and orbits were obtained using Monte Carlo Markov chain methods.Results. We found brighter J and K magnitudes for HD 114174B than obtained previously and extended the photometry down to 0.95 μm. Our new data indicate a higher temperature and then shorter cooling age (5.57 ± 0.02 Gyr) and larger mass (0.75 ± 0.03 M⊙) for this WD than previously assumed. Together with the oldest age for the MS star connected to the use of the Gaia DR2 distance, this solved the discrepancy previously found with the age of the MS star. The two other WDs are less massive, indicating progenitors of ∼1.3 M⊙ and 1.5 − 1.8 M⊙ for HD 2133B and CD-56 7708B, respectively. In spite of the rather long periods, we were able to derive useful constraints on the orbit for HD 114174 and CD-56 7708. They are both seen close to edge-on, which is in agreement with the inclination of the MS stars that are obtained coupling the rotational periods, stellar radii, and the projected rotational velocity from spectroscopy. The composition of the MS stars agrees fairly well with expectations from pollution by the AGB progenitors of the WDs: HD 2133A has a small enrichment of n-capture elements, which is as expected for pollution by an AGB star with an initial mass < 1.5 M⊙; CD-56 7708A is a previously unrecognized mild Ba-star, which is also expected due to pollution by an AGB star with an initial mass in the range of 1.5 − 3.0 M⊙; and HD 114174 has a very moderate excess of n-capture elements, which is in agreement with the expectation for a massive AGB star to have an initial mass > 3.0 M⊙.Conclusions. On the other hand, none of these stars show the excesses of C that are expected to go along with those of n-capture elements. This might be related to the fact that these stars are at the edges of the mass range where we expect nucleosynthesis related to thermal pulses. More work, both theoretical and observational, is required to better understand this issue.
  •  
6.
  • Ligi, R., et al. (författare)
  • Investigation of the inner structures around HD 169142 with VLT/SPHERE
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 473:2, s. 1774-1783
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of the Herbig Ae star HD 169142 with the VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) (K1K2 and H2H3 bands) and the Integral Field Spectrograph (IFS) (Y, J and H bands). We detect several bright blobs at similar to 180 mas separation from the star, and a faint arc-like structure in the IFS data. Our reference differential imaging (RDI) data analysis also finds a bright ring at the same separation. We show, using a simulation based on polarized light data, that these blobs are actually part of the ring at 180 mas. These results demonstrate that the earlier detections of blobs in the H and K-S bands at these separations in Biller et al. as potential planet/substellar companions are actually tracing a bright ring with a Keplerian motion. Moreover, we detect in the images an additional bright structure at similar to 93 mas separation and position angle of 355 degrees, at a location very close to previous detections. It appears point-like in the YJ and K bands but is more extended in the H band. We also marginally detect an inner ring in the RDI data at similar to 100 mas. Follow-up observations are necessary to confirm the detection and the nature of this source and structure.
  •  
7.
  • Cugno, G., et al. (författare)
  • A search for accreting young companions embedded in circumstellar disks High-contrast H alpha imaging with VLT/SPHERE
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In recent years, our understanding of giant planet formation progressed substantially. There have even been detections of a few young protoplanet candidates still embedded in the circumstellar disks of their host stars. The exact physics that describes the accretion of material from the circumstellar disk onto the suspected circumplanetary disk and eventually onto the young, forming planet is still an open question.Aims. We seek to detect and quantify observables related to accretion processes occurring locally in circumstellar disks, which could be attributed to young forming planets. We focus on objects known to host protoplanet candidates and/or disk structures thought to be the result of interactions with planets.Methods. We analyzed observations of six young stars (age 3.5-10 Myr) and their surrounding environments with the SPHERE/ZIMPOL instrument on the Very Large Telescope (VLT) in the H alpha filter (656 nm) and a nearby continuum filter (644.9 nm). We applied several point spread function (PSF) subtraction techniques to reach the highest possible contrast near the primary star, specifically investigating regions where forming companions were claimed or have been suggested based on observed disk morphology.Results. We redetect the known accreting M-star companion HD142527 B with the highest published signal to noise to date in both H alpha and the continuum. We derive new astrometry (r = 62.8(-2.7)(+2.1)mas and PA = (98.7 +/- 1.8)degrees) and photometry (Delta N_Ha = 6.3-(+0.2)(0.3) mag, Delta B_Ha = 6.7 +/- 0.2 mag and Delta Cnt_Ha= 7.3(-0.2)(+0.3) mag) for the companion in agreement with previous studies, and estimate its mass accretion rate (M approximate to 1-2 x 10(-10) M-circle dot yr(-1)). A faint point-like source around HD135344 B (SA0206462) is also investigated, but a second deeper observation is required to reveal its nature. No other companions are detected. In the framework of our assumptions we estimate detection limits at the locations of companion candidates around HD100546, HD169142, and MWC 758 and calculate that processes involving Ha fluxes larger than similar to 8 x 10(-14)-10(-15) erg s(-1) cm(-2) (M > 10(-10)-10(-12) M-circle dot yr(-1)) can be excluded. Furthermore, flux upper limits of similar to 10(-14)-10(-15)erg s(-1) cm(-2) (M < 10(-11) -10(-12)M(circle dot )yr(-1)) are estimated within the gaps identified in the disks surrounding HD135344 B and TW Hya. The derived luminosity limits exclude H alpha signatures at levels similar to those previously detected for the accreting planet candidate LkCa15 b.
  •  
8.
  • D'Orazi, V., et al. (författare)
  • Mapping of shadows cast on a protoplanetary disk by a close binary system
  • 2019
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 3:2, s. 167-172
  • Tidskriftsartikel (refereegranskat)abstract
    • For a comprehensive understanding of planetary formation and evolution, we need to investigate the environment in which planets form: circumstellar disks. Here we present high-contrast imaging observations of V4046 Sagittarii, a 20-Myr-old close binary known to host a circumbinary disk. We have discovered the presence of rotating shadows in the disk, caused by mutual occultations of the central binary. Shadow-like features are often observed in disks(1,2), but those found thus far have not been due to eclipsing phenomena. We have used the phase difference due to light travel time to measure the flaring of the disk and the geometrical distance of the system. We calculate a distance that is in very good agreement with the value obtained from the Gaia mission's Data Release 2 (DR2), and flaring angles of alpha = (6.2 +/- 0.6)degrees and alpha = (8.5 +/- 1.0)degrees for the inner and outer disk rings, respectively. Our technique opens up a path to explore other binary systems, providing an independent estimate of distance and the flaring angle, a crucial parameter for disk modelling.
  •  
9.
  • Garufi, A., et al. (författare)
  • The SPHERE view of the planet-forming disk around HD 100546
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 588
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The mechanisms governing planet formation are not fully understood. A new era of high-resolution imaging of protoplanetary disks has recently started, thanks to new instruments such as SPHERE, GPI, and ALMA. The planet formation process can now be directly studied by imaging both planetary companions embedded in disks and their e ff ect on disk morphology. Aims. We image disk features that could be potential signs of planet-disk interaction with unprecedented spatial resolution and sensitivity. Two companion candidates have been claimed in the disk around the young Herbig Ae /Be star HD 100546. Thus, this object serves as an excellent target for our investigation of the natal environment of giant planets. Methods. We exploit the power of extreme adaptive optics operating in conjunction with the new high-contrast imager SPHERE to image HD 100546 in scattered light. We obtained the first polarized light observations of this source in the visible (with resolution as fine as 2 AU) and new H and K band total intensity images that we analyzed with the p y n p o i n t package. Results. The disk shows a complex azimuthal morphology, where multiple scattering of photons most likely plays an important role. High brightness contrasts and arm-like structures are ubiquitous in the disk. A double-wing structure (partly due to angular di ff erential imaging processing) resembles a morphology newly observed in inclined disks. Given the cavity size in the visible (11 AU), the CO emission associated to the planet candidate c might arise from within the circumstellar disk. We find an extended emission in the K band at the expected location of b. The surrounding large-scale region is the brightest in scattered light. There is no sign of any disk gap associated to b.
  •  
10.
  • Pohl, A., et al. (författare)
  • New constraints on the disk characteristics and companion candidates around T Chamaeleontis with VLT/SPHERE
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The transition disk around the T Tauri star T Cha possesses a large gap, making it a prime target for high-resolution imaging in the context of planet formation.Aims. We aim to find signs of disk evolutionary processes by studying the disk geometry and the dust grain properties at its surface, and to search for companion candidates.Methods. We analyze a set of VLT/SPHERE data at near-infrared and optical wavelengths. We performed polarimetric imaging of T Cha with IRDIS (1.6 mu m) and ZIMPOL (0.5-0.9 mu m), and obtained intensity images from IRDIS dual-band imaging with simultaneous spectro-imaging with IFS (0.9-1.3 mu m).Results. The disk around T Cha is detected in all observing modes and its outer disk is resolved in scattered light with unprecedented angular resolution and signal-to-noise. The images reveal a highly inclined disk with a noticeable east-west brightness asymmetry. The significant amount of non-azimuthal polarization signal in the U-phi images, with a U-phi/Q(phi) peak-to-peak value of 14%, is in accordance with theoretical studies on multiple scattering in an inclined disk. Our optimal axisymmetric radiative transfer model considers two coplanar inner and outer disks, separated by a gap of 0.'' 28 (similar to 30 au) in size, which is larger than previously thought. We derive a disk inclination of similar to 69 deg and PA of similar to 114 deg. In order to self-consistently reproduce the intensity and polarimetric images, the dust grains, responsible for the scattered light, need to be dominated by sizes of around ten microns. A point source is detected at an angular distance of 3.5 '' from the central star. It is, however, found not to be co-moving. Conclusions. We confirm that the dominant source of emission is forward scattered light from the near edge of the outer disk. Our point source analysis rules out the presence of a companion with mass larger than similar to 8.5 M-jup between 0.'' 1 and 0.'' 3. The detection limit decreases to similar to 2 M-jup for 0.'' 3 to 4.0 ''.
  •  
11.
  • Pohl, A., et al. (författare)
  • The Circumstellar Disk HD 169142 : Gas, Dust, and Planets Acting in Concert?
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 850:1
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (similar to 1.2 mu m) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0 ''.16 (similar to 19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0 ''.18 (similar to 21 au) and 0 ''.56 (similar to 66 au) and marginally detect a faint third gap at 0 ''.70-0 ''.73 (similar to 82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate.
  •  
12.
  • Keppler, M., et al. (författare)
  • Gap, shadows, spirals, and streamers : SPHERE observations of binary-disk interactions in GG Tauri A
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A large portion of stars is found to be part of binary or higher-order multiple systems. The ubiquity of planets found around single stars raises the question of whether and how planets in binary systems form. Protoplanetary disks are the birthplaces of planets, and characterizing them is crucial in order to understand the planet formation process.Aims. Our goal is to characterize the morphology of the GG Tau A disk, one of the largest and most massive circumbinary disks. We also aim to trace evidence for binary-disk interactions.Methods. We obtained observations in polarized scattered light of GG Tau A using the SPHERE/IRDIS instrument in the H-band filter. We analyzed the observed disk morphology and substructures. We ran 2D hydrodynamical models to simulate the evolution of the circumbinary ring over the lifetime of the disk.Results. The disk and also the cavity and the inner region are highly structured, with several shadowed regions, spiral structures, and streamer-like filaments. Some of these are detected here for the first time. The streamer-like filaments appear to connect the outer ring with the northern arc. Their azimuthal spacing suggests that they may be generated through periodic perturbations by the binary, which tear off material from the inner edge of the outer disk once during each orbit. By comparing observations to hydrodynamical simulations, we find that the main features, in particular, the gap size, but also the spiral and streamer filaments, can be qualitatively explained by the gravitational interactions of a binary with a semimajor axis of similar to 35 au on an orbit coplanar with the circumbinary ring.
  •  
13.
  • Langlois, M., et al. (författare)
  • First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lupi
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Aims. Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. Methods. We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY Lup disk with IRDIS (at 1.6 mu m), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9-1.3 mu m). Results. We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY Lup, at projected separations in the 100 au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 mu m. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects.
  •  
14.
  • Asensio-Torres, R., et al. (författare)
  • Perturbers : SPHERE detection limits to planetary-mass companions in protoplanetary disks
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of a wide range of substructures such as rings, cavities, and spirals has become a common outcome of high spatial resolution imaging of protoplanetary disks, both in the near-infrared scattered light and in the thermal millimetre continuum emission. The most frequent interpretation of their origin is the presence of planetary-mass companions perturbing the gas and dust distribution in the disk (perturbers), but so far the only bona fide detection has been the two giant planets carving the disk around PDS 70. Here, we present a sample of 15 protoplanetary disks showing substructures in SPHERE scattered-light images and a homogeneous derivation of planet detection limits in these systems. To obtain mass limits we rely on different post-formation luminosity models based on distinct formation conditions, which are critical in the first million years of evolution. We also estimate the mass of these perturbers through a Hill radius prescription and a comparison to ALMA data. Assuming that one single planet carves each substructure in scattered light, we find that more massive perturbers are needed to create gaps within cavities than rings, and that we might be close to a detection in the cavities of RX J1604.3-2130A, RX J1615.3-3255, Sz Cha, HD 135344B, and HD 34282. We reach typical mass limits in these cavities of 3–10 MJup. For planets in the gaps between rings, we find that the detection limits of SPHERE high-contrast imaging are about an order of magnitude away in mass, and that the gaps of PDS 66 and HD 97048 seem to be the most promising structures for planet searches. The proposed presence of massive planets causing spiral features in HD 135344B and HD 36112 are also within SPHERE’s reach assuming hot-start models. These results suggest that the current detection limits are able to detect hot-start planets in cavities, under the assumption that they are formed by a single perturber located at the centre of the cavity. More realistic planet mass constraints would help to clarify whether this is actually the case, which might indicate that perturbers are not the only way of creating substructures.
  •  
15.
  • Brown-Sevilla, S. B., et al. (författare)
  • Revisiting the atmosphere of the exoplanet 51 Eridani b with VLT/SPHERE
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to better constrain the atmospheric properties of the directly imaged exoplanet 51 Eri b using a retrieval approach with data of higher signal-to-noise ratio (S/N) than previously reported. In this context, we also compare the results from an atmospheric retrieval to using a self-consistent model to fit atmospheric parameters. Methods. We applied the radiative transfer code petitRADTRANS to our near-infrared SPHERE observations of 51 Eri b in order to retrieve its atmospheric parameters. Additionally, we attempted to reproduce previous results with the retrieval approach and compared the results to self-consistent models using the best-fit parameters from the retrieval as priors. Results. We present a higher S/N YH spectrum of the planet and revised K1K2 photometry (M-K1 = 15.11 +/- 0.04 mag, M-K2 = 17.11 +/- 0.38 mag). The best-fit parameters obtained using an atmospheric retrieval differ from previous results using self-consistent models. In general, we find that our solutions tend towards cloud-free atmospheres (e.g. log tau(clouds) = 5.20 +/- 1.44). For our `nominal' model with new data, we find a lower metallicity ([Fe/H] = 0.26 +/- 0.30 dex) and C/O ratio (0.38 +/- 0.09), and a slightly higher effective temperature (T-eff = 807 +/- 45 K) than previous studies. The surface gravity (log g = 4.05 +/- 0.37) is in agreement with the reported values in the literature within uncertainties. We estimate the mass of the planet to be between 2 and 4 MJup. When comparing with self-consistent models, we encounter a known correlation between the presence of clouds and the shape of the P-T profiles. Conclusions. Our findings support the idea that results from atmospheric retrievals should not be discussed in isolation, but rather along with self-consistent temperature structures obtained using the best-fit parameters of the retrieval. This, along with observations at longer wavelengths, might help to better characterise the atmospheres and determine their degree of cloudiness.
  •  
16.
  • Muro-Arena, G. A., et al. (författare)
  • Spirals inside the millimeter cavity of transition disk SR 21
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydrodynamical simulations of planet-disk interactions suggest that planets may be responsible for a number of the substructures frequently observed in disks in both scattered light and dust thermal emission. Despite the ubiquity of these features, direct evidence of planets embedded in disks and of the specific interaction features like spiral arms within planetary gaps are still rare.Aims. In this study we discuss recent observational results in the context of hydrodynamical simulations in order to infer the properties of a putative embedded planet in the cavity of a transition disk.Methods. We imaged the transition disk SR 21 in H-band in scattered light with SPHERE/IRDIS and in thermal dust emission with ALMA band 3 (3 mm) observations at a spatial resolution of 0.1 ''. We combine these datasets with existing Band 9 (430 mu m) and Band 7 (870 mu m) ALMA continuum data.Results. The Band 3 continuum data reveals a large cavity and a bright ring peaking at 53 au strongly suggestive of dust trapping. The ring shows a pronounced azimuthal asymmetry, with a bright region in the northwest that we interpret as a dust overdensity. A similarly asymmetric ring is revealed at the same location in polarized scattered light, in addition to a set of bright spirals inside the millimeter cavity and a fainter spiral bridging the gap to the outer ring. These features are consistent with a number of previous hydrodynamical models of planet-disk interactions, and suggest the presence of a similar to 1 M-Jup planet at 44 au and PA = 11 deg. This makes SR21 the first disk showing spiral arms inside the millimeter cavity, and the first disk for which the location of a putative planet can be precisely inferred.Conclusions. The main features of SR 21 in both scattered light and thermal emission are consistent with hydrodynamical predictions of planet-disk interactions. With the location of a possible planet being well constrained by observations, it is an ideal candidate for follow-up observations to search for direct evidence of a planetary companion still embedded in its disk.
  •  
17.
  • Arnold, S. V., et al. (författare)
  • Recognition of Incident Diabetes Mellitus During an Acute Myocardial Infarction
  • 2015
  • Ingår i: Circulation-Cardiovascular Quality and Outcomes. - : Ovid Technologies (Wolters Kluwer Health). - 1941-7705 .- 1941-7713. ; 8:3, s. 260-267
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-Diabetes mellitus (DM) is common in patients hospitalized with an acute myocardial infarction (AMI), representing in some cases the first opportunity to recognize and treat DM. We report the incidence of new DM and its recognition among patients with AMI. Methods and Results-Patients in a 24-site US AMI registry (2005-08) had glycosylated hemoglobin assessed at a core laboratory, with results blinded to clinicians and local clinical measurements left to the discretion of the treating providers. Among 2854 AMI patients without known DM on admission, 287 patients (10%) met criteria for previously unknown DM, defined by a core laboratory glycosylated hemoglobin of >= 6.5%. Among these, 186 (65%) were unrecognized by treating clinicians, receiving neither DM education, glucose-lowering medications at discharge, nor documentation of DM in the chart (median glycosylated hemoglobin of unrecognized patients, 6.7%; range, 6.5-12.3%). Six months after discharge, only 5% of those not recognized as having DM during hospitalization had been initiated on glucose-lowering medications versus 66% of those recognized (P< 0.001). Conclusions-Underlying DM that has not been previously diagnosed is common among AMI patients, affecting 1 in 10 patients, yet is recognized by the care team only one third of the time. Given its frequency and therapeutic implications, including but extending beyond the initiation of glucose-lowering treatment, consideration should be given to screening all AMI patients for DM during hospitalization. Inexpensive, ubiquitous, and endorsed as an acceptable screen for DM, glycosylated hemoglobin testing should be considered for this purpose.
  •  
18.
  • Arnold, S. V., et al. (författare)
  • The reliability of in-hospital diagnoses of diabetes mellitus in the setting of an acute myocardial infarction
  • 2014
  • Ingår i: BMJ Open Diabetes Research and Care. - : BMJ. - 2052-4897. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Incident diabetes mellitus (DM) is important to recognize in patients with acute myocardial infarction (AMI). To develop an efficient screening strategy, we explored the use of random plasma glucose (RPG) at admission and fasting plasma glucose (FPG) to select patients with AMI for glycosylated hemoglobin (HbA1c) testing. DESIGN SETTING ANDPARTICIPANTS: Prospective registry of 1574 patients with AMI not taking glucose-lowering medication from 24 US hospitals. All patients had HbA1c measured at a core laboratory and admission RPG and >/=2 FPGs recorded during hospitalization. We examined potential combinations of RPG and FPG and compared these with HbA1c>/=6.5%-considered the gold standard for DM diagnosis in these analyses. RESULTS: An RPG>140 mg/dL or FPG>/=126 mg/dL had high sensitivity for DM diagnosis. Combining these into a screening protocol (if admission RPG>140, check HbA1c; or if FPG>/=126 on a subsequent day, check HbA1c) led to HbA1c testing in 50% of patients and identified 86% with incident DM (number needed to screen (NNS)=3.3 to identify 1 case of DM; vs NNS=5.6 with universal HbA1c screening). Alternatively, using an RPG>180 led to HbA1c testing in 40% of patients with AMI and identified 82% of DM (NNS=2.7). CONCLUSIONS: We have established two potential selective screening methods for DM in the setting of AMI that could identify the vast majority of incident DM by targeted screening of 40-50% of patients with AMI with HbA1c testing. Using these methods may efficiently identify patients with AMI with DM so that appropriate education and treatment can be promptly initiated.
  •  
19.
  • Stolker, J. M., et al. (författare)
  • Relationship between glycosylated hemoglobin assessment and glucose therapy intensification in patients with diabetes hospitalized for acute myocardial infarction
  • 2012
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 35:5, s. 991-3
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To evaluate the relationship between A1C and glucose therapy intensification (GTI) in patients with diabetes mellitus (DM) hospitalized for acute myocardial infarction (AMI). RESEARCH DESIGN AND METHODS: A1C was measured as part of routine care (clinical A1C) or in the core laboratory (laboratory A1C, results unavailable to clinicians). GTI predictors were identified using hierarchical Poisson regression. RESULTS: Of 1,274 patients, 886 (70%) had clinical A1C and an additional 263 had laboratory A1C measured. Overall, A1C was <7% in 419 (37%), 7-9% in 415 (36%), and >9% in 315 patients (27%). GTI occurred in 31% of patients and was more frequent in those with clinical A1C both before (34 vs. 24%, P < 0.001) and after multivariable adjustment (relative risk 1.34 [95% CI 1.12-1.62] vs. no clinical A1C). CONCLUSIONS: Long-term glucose control is poor in most AMI patients with DM, but only a minority of patients undergo GTI at discharge. Inpatient A1C assessment is strongly associated with intensification of glucose-lowering therapy.
  •  
20.
  • Godoy, N., et al. (författare)
  • ISPY - NaCo Imaging Survey for Planets around Young stars : CenteR: The impact of centering and frame selection
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Direct imaging has made significant progress over the past decade, in part thanks to a new generation of instruments and excellent adaptive optic systems, but also thanks to advanced post-processing techniques. The combination of these two factors allowed the detection of several giant planets with separations as close as 0.2 arcsec with contrasts typically reaching 9-10 magnitudes at nearinfrared wavelengths. Observing strategies and data rates vary depending on the instrument and the wavelength, with L- and M-band observations yielding tens of thousands of images to be combined.Aims. We present a new approach, tailored for VLT/NaCo observations performed with the Annular Groove Phase Mask (AGPM) coronagraph, but that can be applied to other instruments using similar coronagraphs. Our pipeline aims to improve the post-processing of the observations on two fronts: identifying the location of the star behind the AGPM to better align the science frames and performing frame selection.Methods. Our method relies on finding the position of the AGPM in the sky frame observations, and correlating it with the circular aperture of the coronagraphic mask. This relationship allows us to retrieve the location of the AGPM in the science frames. We are then able to model the torus shape visible in the sky-subtracted science frames, as a combination of negative and positive 2D Gaussian functions. The model provides additional information that is useful to design our frame selection criteria. Results. We tested our pipeline on three targets (β Pictoris, R CrA, and HD 34282), two of which have companions at intermediate and close separations, and the third hosts a bright circumstellar disk. We find that the centering of the science frames has a significant impact on the signal-to-noise ratio (S/N) of the companions. Our results suggest that the best reduction is achieved when performing the principal component analysis centered on the location of the AGPM and derotating the frames centered at the location of the star before collapsing the final datacube. We improved the S/N of companions around β Pictoris and R CrA by 24 +/- 3% and 117 +/- 11% respectively, compared to other state-of-the-art reductions. We find that the companion position for all the centering strategies are consistent within 3 σ. Finally, we find that even for NaCo observations with tens of thousands of frames, frame selection yields just marginal improvement for point sources, but may improve the final images for objects with extended emission such as disks.Conclusions. We propose a novel approach to identify the location of the star behind a coronagraph even when it cannot easily be determined by other methods. We led a thorough study on the importance of frame selection, concluding that the improvements are marginal in most cases, but may yield better contrast in some specific cases. Our approach can be applied to the wealth of archival NaCo data and, assuming that the field of view includes the edges of the coronagraphic mask, its implementation can be adapted to other instruments with coronagraphs similar to the AGPM used on NaCo (e.g., Keck/NIRC2, LBT/LMIRCam).
  •  
21.
  • Goncalves, F. Bastos, et al. (författare)
  • Early sac shrinkage predicts a low risk of late complications after endovascular aortic aneurysm repair
  • 2014
  • Ingår i: British Journal of Surgery. - : Oxford University Press (OUP). - 0007-1323 .- 1365-2168. ; 101:7, s. 802-810
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Aneurysm shrinkage has been proposed as a marker of successful endovascular aneurysm repair (EVAR). Patients with early postoperative shrinkage may experience fewer subsequent complications, and consequently require less intensive surveillance. Methods: Patients undergoing EVAR from 2000 to 2011 at three vascular centres (in 2 countries), who had two imaging examinations (postoperative and after 6-18 months), were included. Maximum diameter, complications and secondary interventions during follow-up were registered. Patients were categorized according to early sac dynamics. The primary endpoint was freedom from late complications. Secondary endpoints were freedom from secondary intervention, postimplant rupture and direct (type I/III) endoleaks. Results: Some 597 EVARs (71.1 per cent of all EVARs) were included. No shrinkage was observed in 284 patients (47.6 per cent), moderate shrinkage (5-9mm) in 142 (23.8 per cent) and major shrinkage (at least 10mm) in 171 patients (28.6 per cent). Four years after the index imaging, the rate of freedom from complications was 84.3 (95 per cent confidence interval 78.7 to 89.8), 88.1 (80.6 to 95.5) and 94.4 (90.1 to 98.7) per cent respectively. No shrinkage was an independent risk factor for late complications compared with major shrinkage (hazard ratio (HR) 3.11; P < 0.001). Moderate compared with major shrinkage (HR 2.10; P = 0.022), early postoperative complications (HR 3.34; P < 0.001) and increasing abdominal aortic aneurysm baseline diameter (HR 1.02; P = 0.001) were also risk factors for late complications. Freedom from secondary interventions and direct endoleaks was greater for patients with major sac shrinkage. Conclusion: Early change in aneurysm sac diameter is a strong predictor of late complications after EVAR. Patients with major sac shrinkage have a very low risk of complications for up to 5 years. This parameter may be used to tailor postoperative surveillance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy