SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stranneheim H) "

Sökning: WFRF:(Stranneheim H)

  • Resultat 1-27 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brownstein, Catherine A., et al. (författare)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
3.
  • Hammarsjö, A., et al. (författare)
  • High diagnostic yield in skeletal ciliopathies using massively parallel genome sequencing, structural variant screening and RNA analyses
  • 2021
  • Ingår i: Journal of Human Genetics. - : Springer Nature. - 1434-5161 .- 1435-232X. ; 66:10, s. 995-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Davanian, H., et al. (författare)
  • Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:9, s. e46440-
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Nilsson, D., et al. (författare)
  • From cytogenetics to cytogenomics : whole genome sequencing as a comprehensive genetic test in rare disease diagnostics
  • 2019
  • Ingår i: European Journal of Human Genetics. - : Springer Nature. - 1018-4813 .- 1476-5438. ; 27, s. 1666-1667
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Rare genetic diseases are caused by different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements. Recent data indicates that whole genome sequencing (WGS) may be used as a comprehensive test to identify multiple types of pathologic genetic aberrations in a single analysis.We present FindSV, a bioinformatic pipeline for detection of balanced (inversions and translocations) and unbalanced (deletions and duplications) structural variants (SVs). First, FindSV was tested on 106 validated deletions and duplications with a median size of 850 kb (min: 511 bp, max: 155 Mb). All variants were detected. Second, we demonstrated the clinical utility in 138 monogenic WGS panels. SV analysis yielded 11 diagnostic findings (8%). Remarkably, a complex structural rearrangement involving two clustered deletions disrupting SCN1A, SCN2A, and SCN3A was identified in a three months old girl with epileptic encephalopathy. Finally, 100 consecutive samples referred for clinical microarray were also analyzed by WGS. The WGS data was screened for large (>2 kbp) SVs genome wide, processed for visualization in our clinical routine arrayCGH workflow with the newly developed tool vcf2cytosure, and for exonic SVs and SNVs in a panel of 700 genes linked to intellectual disability. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. The diagnostic rate (29%) was doubled compared to clinical microarray (12%).In conclusion, using WGS we have detected a wide range of structural variation with high accuracy, confirming it a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
  •  
19.
  • Nätt, Daniel, 1980-, et al. (författare)
  • Transgenerational Phenotypic Tuning of Offspring : Adaptive Responses to a Prenatal Environmental Challenge in Chickens
  • 2008
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Stress may affect both the exposed individuals and the development of their offspring. We have previously shown that offspring of stressed domestic chickens can inherit the stressed-induced learning impairments of their parents and the associated modifications in brain gene expression. In this study we investigated possible adaptive aspects of such cross-generation transmissions. We hypothesized that stress would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring. Parents were raised in an unpredictable diurnal light rhythm (stress treatment) or in control conditions (12:12 h light:dark). In a foraging test, stressed birds pecked more at freely available than at hidden and more attractive food compared to birds from the control group. Female offspring of stressed birds, raised in control conditions without parental contact, showed a similar foraging behavior, differing from offspring of control birds. Furthermore, adult offspring of stressed birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of control parents. One possible explanation for the more dominant behavior of these birds might be increased androgen/estrogen effects from the yolk during their embryonic phase leading to increased anabolism and androgenic behavior. Using cDNA microarrays, we found that some of the differential brain gene expression caused by stress tended to be mirrored in the offspring, indicating transgenerational effects.  In particular, several immunoglobulin genes seemed to be affected similarly in both stressed parents and their offspring. Estradiol, but not corticoserone, testosterone, androstendion, or dihydrotestosterone, was significantly higher in egg yolk from stressed birds, suggesting a possible mechanism for these effects. Our findings suggest that stress may cause adaptive responses in feeding behavior, which may be transmitted to the offspring by means of epigenetic regulation of immune genes. This may in turn prepare the offspring for coping with an unpredictable environment.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Stranneheim, Henrik, et al. (författare)
  • Rapid pulsed whole genome sequencing for comprehensive acute diagnostics of inborn errors of metabolism
  • 2014
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 15, s. 1090-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Massively parallel DNA sequencing (MPS) has the potential to revolutionize diagnostics, in particular for monogenic disorders. Inborn errors of metabolism (IEM) constitute a large group of monogenic disorders with highly variable clinical presentation, often with acute, nonspecific initial symptoms. In many cases irreversible damage can be reduced by initiation of specific treatment, provided that a correct molecular diagnosis can be rapidly obtained. MPS thus has the potential to significantly improve both diagnostics and outcome for affected patients in this highly specialized area of medicine. Results: We have developed a conceptually novel approach for acute MPS, by analysing pulsed whole genome sequence data in real time, using automated analysis combined with data reduction and parallelization. We applied this novel methodology to an in-house developed customized work flow enabling clinical-grade analysis of all IEM with a known genetic basis, represented by a database containing 474 disease genes which is continuously updated. As proof-of-concept, two patients were retrospectively analysed in whom diagnostics had previously been performed by conventional methods. The correct disease-causing mutations were identified and presented to the clinical team after 15 and 18 hours from start of sequencing, respectively. With this information available, correct treatment would have been possible significantly sooner, likely improving outcome. Conclusions: We have adapted MPS to fit into the dynamic, multidisciplinary work-flow of acute metabolic medicine. As the extent of irreversible damage in patients with IEM often correlates with timing and accuracy of management in early, critical disease stages, our novel methodology is predicted to improve patient outcome. All procedures have been designed such that they can be implemented in any technical setting and to any genetic disease area. The strategy conforms to international guidelines for clinical MPS, as only validated disease genes are investigated and as clinical specialists take responsibility for translation of results. As follow-up in patients without any known IEM, filters can be lifted and the full genome investigated, after genetic counselling and informed consent.
  •  
27.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-27 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy