SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strawbridge RJ) "

Sökning: WFRF:(Strawbridge RJ)

  • Resultat 1-50 av 99
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Aman, A, et al. (författare)
  • Investigating the potential impact of PCSK9-inhibitors on mood disorders using eQTL-based Mendelian randomization
  • 2022
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 17:12, s. e0279381-
  • Tidskriftsartikel (refereegranskat)abstract
    • Prescription of PCSK9-inhibitors has increased in recent years but not much is known about its off-target effects. PCSK9-expression is evident in non-hepatic tissues, notably the brain, and genetic variation in the PCSK9 locus has recently been shown to be associated with mood disorder-related traits. We investigated whether PCSK9 inhibition, proxied by a genetic reduction in expression of PCSK9 mRNA, might have a causal adverse effect on mood disorder-related traits. We used genetic variants in the PCSK9 locus associated with reduced PCSK9 expression (eQTLs) in the European population from GTEx v8 and examined the effect on PCSK9 protein levels and three mood disorder-related traits (major depressive disorder, mood instability, and neuroticism), using summary statistics from the largest European ancestry genome-wide association studies. We conducted summary-based Mendelian randomization analyses to estimate the causal effects, and attempted replication using data from eQTLGen, Brain-eMETA, and the CAGE consortium. We found that genetically reduced PCSK9 gene-expression levels were significantly associated with reduced PCSK9 protein levels but not with increased risk of mood disorder-related traits. Further investigation of nearby genes demonstrated that reduced USP24 gene-expression levels was significantly associated with increased risk of mood instability (p-value range = 5.2x10-5–0.03), and neuroticism score (p-value range = 2.9x10-5–0.02), but not with PCSK9 protein levels. Our results suggest that genetic variation in this region acts on mood disorders through a PCSK9-independent pathway, and therefore PCSK9-inhibitors are unlikely to have an adverse impact on mood disorder-related traits.
  •  
8.
  •  
9.
  •  
10.
  • Bonomi, A, et al. (författare)
  • Analysis of the genetic variants associated with circulating levels of sgp130. Results from the IMPROVE study
  • 2020
  • Ingår i: Genes and immunity. - : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; 21:2, s. 100-108
  • Tidskriftsartikel (refereegranskat)abstract
    • The genes regulating circulating levels of soluble gp130 (sgp130), the antagonist of the inflammatory response in atherosclerosis driven by interleukin 6, are largely unknown. Aims of the present study were to identify genetic loci associated with circulating sgp130 and to explore the potential association between variants associated with sgp130 and markers of subclinical atherosclerosis. The study is based on IMPROVE (n = 3703), a cardiovascular multicentre study designed to investigate the determinants of carotid intima media thickness, a measure of subclinical atherosclerosis. Genomic DNA was genotyped by the CardioMetaboChip and ImmunoChip. About 360,842 SNPs were tested for association with log-transformed sgp130, using linear regression adjusted for age, gender, and population stratification using PLINK v1.07. A p value of 1 × 10−5 was chosen as threshold for significance value. In an exploratory analysis, SNPs associated with sgp130 were tested for association with c-IMT measures. We identified two SNPs significantly associated with sgp130 levels and 24 showing suggestive association with sgp130 levels. One SNP (rs17688225) on chromosome 14 was positively associated with sgp130 serum levels (β = 0.03 SE = 0.007, p = 4.77 × 10−5) and inversely associated with c-IMT (c-IMTmean–maxβ = −0.001 SE = 0.005, p = 0.0342). Our data indicate that multiple loci regulate sgp130 levels and suggest a possible common pathway between sgp130 and c-IMT measures.
  •  
11.
  •  
12.
  • Burt, O, et al. (författare)
  • Genetic Variation in the ASTN2 Locus in Cardiovascular, Metabolic and Psychiatric Traits: Evidence for Pleiotropy Rather Than Shared Biology
  • 2021
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The link between cardiometabolic and psychiatric illness has long been attributed to human behaviour, however recent research highlights shared biological mechanisms. The ASTN2 locus has been previously implicated in psychiatric and cardiometabolic traits, therefore this study aimed to systematically investigate the genetic architecture of ASTN2 in relation to a wide range of relevant traits. Methods: Baseline questionnaire, assessment and genetic data of 402111 unrelated white British ancestry individuals from the UK Biobank was analysed. Genetic association analyses were conducted using PLINK 1.07, assuming an additive genetic model and adjusting for age, sex, genotyping chip, and population structure. Conditional analyses and linkage disequilibrium assessment were used to determine whether cardiometabolic and psychiatric signals were independent. Results: Associations between genetic variants in the ASTN2 locus and blood pressure, total and central obesity, neuroticism, anhedonia and mood instability were identified. All analyses support the independence of the cardiometabolic traits from the psychiatric traits. In silico analyses provide support for the central obesity signal acting through ASTN2, however most of the other signals are likely acting through other genes in the locus. Conclusions: Our systematic analysis demonstrates that ASTN2 has pleiotropic effects on cardiometabolic and psychiatric traits, rather than contributing to shared pathology.
  •  
13.
  •  
14.
  • Castaldo, L, et al. (författare)
  • Genetic Variants Associated with Non-Alcoholic Fatty Liver Disease Do Not Associate with Measures of Sub-Clinical Atherosclerosis: Results from the IMPROVE Study
  • 2020
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) and atherosclerosis-related cardiovascular diseases (CVD) share common metabolic pathways. We explored the association between three NAFLD-associated single nucleotide polymorphisms (SNPs) rs738409, rs10401969, and rs1260326 with sub-clinical atherosclerosis estimated by the carotid intima-media thickness (c-IMT) and the inter-adventitia common carotid artery diameter (ICCAD) in patients free from clinically overt NAFLD and CVD. The study population is the IMPROVE, a multicenter European study (n = 3711). C-IMT measures and ICCAD were recorded using a standardized protocol. Linear regression with an additive genetic model was used to test for association of the three SNPs with c-IMT and ICCAD. In secondary analyses, the association of the three SNPs with c-IMT and ICCAD was tested after stratification by alanine aminotransferase levels (ALT). No associations were found between rs738409, rs1260326, rs10401969, and c-IMT or ICCAD. Rs738409-G and rs10401969-C were associated with ALT levels (p < 0.001). In patients with ALT levels above 28 U/L (highest quartile), we observed an association between rs10401969-C and c-IMT measures of c-IMTmax and c-IMTmean-max (p = 0.018 and 0.021, respectively). In conclusion, NAFLD-associated SNPs do not associate with sub-clinical atherosclerosis measures. However, our results suggest a possible mediating function of impaired liver function on atherosclerosis development.
  •  
15.
  •  
16.
  • Clark, DW, et al. (författare)
  • Associations of autozygosity with a broad range of human phenotypes
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4957-
  • Tidskriftsartikel (refereegranskat)abstract
    • In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.
  •  
17.
  • Coggi, D, et al. (författare)
  • Relationship between Circulating PCSK9 and Markers of Subclinical Atherosclerosis-The IMPROVE Study
  • 2021
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • (1) Background and purpose: circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of the key regulators of cholesterol metabolism. Despite this, its role as a player in atherosclerosis development is still matter of debate. Here, we investigated the relationships between this protein and several markers of subclinical atherosclerosis. (2) Methods: the IMPROVE study enrolled 3703 European subjects (54–79 years; 48% men; with ≥3 vascular risk factors), asymptomatic for cardiovascular diseases. PCSK9 levels were measured by ELISA. B-mode ultrasound was used to measure markers of carotid subclinical atherosclerosis. (3) Results: in the crude analysis, PCSK9 levels were associated with several baseline measures of carotid intima-media thickness (cIMT) (all p < 0.0001); with cIMT change over time (Fastest-IMTmax-progr) (p = 0.01); with inter-adventitia common carotid artery diameter (ICCAD) (p < 0.0001); and with the echolucency (Grey Scale Median; GSM) of both carotid plaque and plaque-free common carotid IMT (both p < 0.0001). However, after adjustment for age, sex, latitude, and pharmacological treatment, all the afore-mentioned correlations were no longer statistically significant. The lack of correlation was also observed after stratification for sex, latitude, and pharmacological treatments. (4) Conclusions: in subjects who are asymptomatic for cardiovascular diseases, PCSK9 plasma levels do not correlate with vascular damage and/or subclinical atherosclerosis of extracranial carotid arteries.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Dahlman, I, et al. (författare)
  • Numerous Genes in Loci Associated With Body Fat Distribution Are Linked to Adipose Function
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 65:2, s. 433-437
  • Tidskriftsartikel (refereegranskat)abstract
    • Central fat accumulation is a strong risk factor for type 2 diabetes. Genome-wide association studies have identified numerous loci associated with body fat distribution. The objectives of the current study are to examine whether genes in genetic loci linked to fat distribution can be linked to fat cell size and number (morphology) and/or adipose tissue function. We show, in a cohort of 114 women, that almost half of the 96 genes in these loci are indeed associated with abdominal subcutaneous adipose tissue parameters. Thus, adipose mRNA expression of the genes is strongly related to adipose morphology, catecholamine-induced lipid mobilization (lipolysis), or insulin-stimulated lipid synthesis in adipocytes (lipogenesis). In conclusion, the genetic influence on body fat distribution could be mediated via several specific alterations in adipose tissue morphology and function, which in turn may influence the development of type 2 diabetes.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • Franceschini, N, et al. (författare)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 5141-
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  • Hay, R, et al. (författare)
  • Genetic analysis of the PCSK9 locus in psychological, psychiatric, metabolic and cardiovascular traits in UK Biobank
  • 2022
  • Ingår i: European journal of human genetics : EJHG. - : Springer Science and Business Media LLC. - 1476-5438 .- 1018-4813. ; 30:12, s. 1380-1390
  • Tidskriftsartikel (refereegranskat)abstract
    • The association between severe mental illness (SMI) and cardiovascular and metabolic disease (CMD) is poorly understood. PCSK9 is expressed in systems critical to both SMI and CMD and influences lipid homeostasis and brain function. We systematically investigated relationships between genetic variation within the PCSK9 locus and risk for both CMD and SMI. UK Biobank recruited ~500,000 volunteers and assessed a wide range of SMI and CMD phenotypes. We used genetic data from white British ancestry individuals of UK Biobank. Genetic association analyses were conducted in PLINK, with statistical significance defined by the number of independent SNPs. Conditional analyses and linkage disequilibrium assessed the independence of SNPs and the presence of multiple signals. Two genetic risk scores of lipid-lowering alleles were calculated and used as proxies for putative lipid-lowering effects of PCSK9. PCSK9 variants were associated with central adiposity, venous thrombosis embolism, systolic blood pressure, mood instability, and neuroticism (all p < 1.16 × 10−4). No secondary signals were identified. Conditional analyses and high linkage disequilibrium (r2 = 0.98) indicated that mood instability and central obesity may share a genetic signal. Genetic risk scores suggested that the lipid-lowering effects of PCSK9 may be causal for greater mood instability and higher neuroticism. This is the first study to implicate the PCSK9 locus in mood-disorder symptoms and related traits, as well as the shared pathology of SMI and CMD. PCSK9 effects on mood may occur via lipid-lowering mechanisms. Further work is needed to understand whether repurposing PCSK9-targeting therapies might improve SMI symptoms and prevent CMD.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  • Johnston, KJA, et al. (författare)
  • Identification of novel common variants associated with chronic pain using conditional false discovery rate analysis with major depressive disorder and assessment of pleiotropic effects of LRFN5
  • 2019
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 9:1, s. 310-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic pain is a complex trait that is moderately heritable and genetically, as well as phenotypically, correlated with major depressive disorder (MDD). Use of the conditional false discovery rate (cFDR) approach, which leverages pleiotropy identified from existing GWAS outputs, has been successful in discovering novel associated variants in related phenotypes. Here, genome-wide association study outputs for both von Korff chronic pain grade and for MDD were used to identify variants meeting a cFDR threshold for each outcome phenotype separately, as well as a conjunctional cFDR (ccFDR) threshold for both phenotypes together. Using a moderately conservative threshold, we identified a total of 11 novel single nucleotide polymorphisms (SNPs), six of which were associated with chronic pain grade and nine of which were associated with MDD. Four SNPs on chromosome 14 were associated with both chronic pain grade and MDD. SNPs associated only with chronic pain grade were located within SLC16A7 on chromosome 12. SNPs associated only with MDD were located either in a gene-dense region on chromosome 1 harbouring LINC01360, LRRIQ3, FPGT and FPGT-TNNI3K, or within/close to LRFN5 on chromosome 14. The SNPs associated with both outcomes were also located within LRFN5. Several of the SNPs on chromosomes 1 and 14 were identified as being associated with expression levels of nearby genes in the brain and central nervous system. Overall, using the cFDR approach, we identified several novel genetic loci associated with chronic pain and we describe likely pleiotropic effects of a recently identified MDD locus on chronic pain.
  •  
40.
  • Johnston, KJA, et al. (författare)
  • Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank
  • 2021
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 17:4, s. e1009428-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic pain is highly prevalent worldwide and imparts a significant socioeconomic and public health burden. Factors influencing susceptibility to, and mechanisms of, chronic pain development, are not fully understood, but sex is thought to play a significant role, and chronic pain is more prevalent in women than in men. To investigate sex differences in chronic pain, we carried out a sex-stratified genome-wide association study of Multisite Chronic Pain (MCP), a derived chronic pain phenotype, in UK Biobank on 178,556 men and 209,093 women, as well as investigating sex-specific genetic correlations with a range of psychiatric, autoimmune and anthropometric phenotypes and the relationship between sex-specific polygenic risk scores for MCP and chronic widespread pain. We also assessed whether MCP-associated genes showed expression pattern enrichment across tissues. A total of 123 SNPs at five independent loci were significantly associated with MCP in men. In women, a total of 286 genome-wide significant SNPs at ten independent loci were discovered. Meta-analysis of sex-stratified GWAS outputs revealed a further 87 independent associated SNPs. Gene-level analyses revealed sex-specific MCP associations, with 31 genes significantly associated in females, 37 genes associated in males, and a single gene, DCC, associated in both sexes. We found evidence for sex-specific pleiotropy and risk for MCP was found to be associated with chronic widespread pain in a sex-differential manner. Male and female MCP were highly genetically correlated, but at an rg of significantly less than 1 (0.92). All 37 male MCP-associated genes and all but one of 31 female MCP-associated genes were found to be expressed in the dorsal root ganglion, and there was a degree of enrichment for expression in sex-specific tissues. Overall, the findings indicate that sex differences in chronic pain exist at the SNP, gene and transcript abundance level, and highlight possible sex-specific pleiotropy for MCP. Results support the proposition of a strong central nervous-system component to chronic pain in both sexes, additionally highlighting a potential role for the DRG and nociception.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  • Kulyte, A, et al. (författare)
  • Genome-Wide Association Study Identifies Genetic Loci Associated With Fat Cell Number and Overlap With Genetic Risk Loci for Type 2 Diabetes
  • 2022
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 71:6, s. 1350-1362
  • Tidskriftsartikel (refereegranskat)abstract
    • Interindividual differences in generation of new fat cells determine body fat and type 2 diabetes risk. In the GENetics of Adipocyte Lipolysis (GENiAL) cohort, which consists of participants who have undergone abdominal adipose biopsy, we performed a genome-wide association study (GWAS) of fat cell number (n = 896). Candidate genes from the genetic study were knocked down by siRNA in human adipose-derived stem cells. We report 318 single nucleotide polymorphisms (SNPs) and 17 genetic loci displaying suggestive (P &lt; 1 × 10−5) association with fat cell number. Two loci pass threshold for GWAS significance, on chromosomes 2 (lead SNP rs149660479-G) and 7 (rs147389390-deletion). We filtered for fat cell number–associated SNPs (P &lt; 1.00 × 10−5) using evidence of genotype-specific expression. Where this was observed we selected genes for follow-up investigation and hereby identified SPATS2L and KCTD18 as regulators of cell proliferation consistent with the genetic data. Furthermore, 30 reported type 2 diabetes–associated SNPs displayed nominal and consistent associations with fat cell number. In functional follow-up of candidate genes, RPL8, HSD17B12, and PEPD were identified as displaying effects on cell proliferation consistent with genetic association and gene expression findings. In conclusion, findings presented herein identify SPATS2L, KCTD18, RPL8, HSD17B12, and PEPD of potential importance in controlling fat cell numbers (plasticity), the size of body fat, and diabetes risk.
  •  
46.
  •  
47.
  • Kulyte, A, et al. (författare)
  • Shared genetic loci for body fat storage and adipocyte lipolysis in humans
  • 2022
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1, s. 3666-
  • Tidskriftsartikel (refereegranskat)abstract
    • Total body fat and central fat distribution are heritable traits and well-established predictors of adverse metabolic outcomes. Lipolysis is the process responsible for the hydrolysis of triacylglycerols stored in adipocytes. To increase our understanding of the genetic regulation of body fat distribution and total body fat, we set out to determine if genetic variants associated with body mass index (BMI) or waist-hip-ratio adjusted for BMI (WHRadjBMI) in genome-wide association studies (GWAS) mediate their effect by influencing adipocyte lipolysis. We utilized data from the recent GWAS of spontaneous and isoprenaline-stimulated lipolysis in the unique GENetics of Adipocyte Lipolysis (GENiAL) cohort. GENiAL consists of 939 participants who have undergone abdominal subcutaneous adipose biopsy for the determination of spontaneous and isoprenaline-stimulated lipolysis in adipocytes. We report 11 BMI and 15 WHRadjBMI loci with SNPs displaying nominal association with lipolysis and allele-dependent gene expression in adipose tissue according to in silico analysis. Functional evaluation of candidate genes in these loci by small interfering RNAs (siRNA)-mediated knock-down in adipose-derived stem cells identified ZNF436 and NUP85 as intrinsic regulators of lipolysis consistent with the associations observed in the clinical cohorts. Furthermore, candidate genes in another BMI-locus (STX17) and two more WHRadjBMI loci (NID2, GGA3, GRB2) control lipolysis alone, or in conjunction with lipid storage, and may hereby be involved in genetic control of body fat. The findings expand our understanding of how genetic variants mediate their impact on the complex traits of fat storage and distribution.
  •  
48.
  •  
49.
  • Laguzzi, F, et al. (författare)
  • Intake of food rich in saturated fat in relation to subclinical atherosclerosis and potential modulating effects from single genetic variants
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 7866-
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between intake of saturated fats and subclinical atherosclerosis, as well as the possible influence of genetic variants, is poorly understood and investigated. We aimed to investigate this relationship, with a hypothesis that it would be positive, and to explore whether genetics may modulate it, using data from a European cohort including 3,407 participants aged 54–79 at high risk of cardiovascular disease. Subclinical atherosclerosis was assessed by carotid intima-media thickness (C-IMT), measured at baseline and after 30 months. Logistic regression (OR; 95% CI) was employed to assess the association between high intake of food rich in saturated fat (vs. low) and: (1) the mean and the maximum values of C-IMT in the whole carotid artery (C-IMTmean, C-IMTmax), in the bifurcation (Bif-), the common (CC-) and internal (ICA-) carotid arteries at baseline (binary, cut-point ≥ 75th), and (2) C-IMT progression (binary, cut-point > zero). For the genetic-diet interaction analyses, we considered 100,350 genetic variants. We defined interaction as departure from additivity of effects. After age- and sex-adjustment, high intake of saturated fat was associated with increased C-IMTmean (OR:1.27;1.06–1.47), CC-IMTmean (OR:1.22;1.04–1.44) and ICA-IMTmean (OR:1.26;1.07–1.48). However, in multivariate analysis results were no longer significant. No clear associations were observed between high intake of saturated fat and risk of atherosclerotic progression. There was no evidence of interactions between high intake of saturated fat and any of the genetic variants considered, after multiple testing corrections. High intake of saturated fats was not independently associated with subclinical atherosclerosis. Moreover, we did not identify any significant genetic-dietary fat interactions in relation to risk of subclinical atherosclerosis.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 99

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy