SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stroth Nikolas) "

Sökning: WFRF:(Stroth Nikolas)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, Anna, et al. (författare)
  • Neuropeptidomics of mouse hypothalamus after imipramine treatment reveal somatostatin as a potential mediator of antidepressant effects
  • 2012
  • Ingår i: Neuropharmacology. - : Elsevier BV. - 0028-3908 .- 1873-7064. ; 62:1, s. 347-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive activation of the hypothalamic pituitary adrenal (HPA) axis has been associated with numerous diseases, including depression, and the tricyclic antidepressant imipramine has been shown to suppress activity of the HPA axis. Central hypothalamic control of the HPA axis is complex and involves a number of neuropeptides released from multiple hypothalamic subnuclei. The present study was therefore designed to determine the effects of imipramine administration on the mouse hypothalamus using a peptidomics approach. Among the factors found to be downregulated after acute (one day) or chronic (21 days) imipramine administration were peptides derived from secretogranin 1 (chromogranin B) as well as peptides derived from cerebellin precursors. In contrast, peptides SRIF-14 and SRIF-28 (1-11) derived from somatostatin (SRIF, somatotropin release inhibiting factor) were significantly upregulated by imipramine in the hypothalamus. Because diminished SRIF levels have long been known to occur in depression, a second part of the study investigated the roles of individual SRIF receptors in mediating potential antidepressant effects. SRA880, an antagonist of the somatostatin-1 autoreceptor (sst1) which positively modulates release of endogenous SRIF, was found to synergize with imipramine in causing antidepressant-like effects in the tail suspension test. Furthermore, chronic co-administration of SRA880 and imipramine synergistically increased BDNF mRNA expression in the cerebral cortex. Application of SRIF or L054264, an sst2 receptor agonist, but not 1,803807, an sst4 receptor agonist, increased phosphorylation of CaMKII and GluR1 in cerebrocortical slices. Our present experiments thus provide evidence for antidepressant-induced upregulation of SRIF in the brain, and strengthen the notion that augmented SRIF expression and signaling may counter depressive-like symptoms.
  •  
2.
  • Schintu, Nicoletta, et al. (författare)
  • Non-dopaminergic Alterations in Depression-Like FSL Rats in Experimental Parkinsonism and L-DOPA Responses
  • 2020
  • Ingår i: Frontiers in Pharmacology. - : FRONTIERS MEDIA SA. - 1663-9812. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Depression is a common comorbid condition in Parkinson's disease (PD). Patients with depression have a two-fold increased risk to develop PD. Further, depression symptoms often precede motor symptoms in PD and are frequent at all stages of the disease. However, the influence of a depressive state on the responses to antiparkinson treatments is largely unknown. In this study, the genetically inbred depression-like flinders sensitive line (FSL) rats and control flinders resistant line (FRL) rats were studied in models of experimental parkinsonism. FSL rats showed a potentiated tremorgenic response to tacrine, a cholinesterase inhibitor used experimentally to induce 6 Hz resting tremor reminiscent of parkinsonian tremor. We also studied rats lesioned with 6-OHDA to induce hemiparkinsonism. No baseline differences in dopaminergic response to acute apomorphine or L-DOPA was found. However, following chronic treatment with L-DOPA, FRL rats developed sensitization of turning and abnormal involuntary movements (AIMs); these effects were counteracted by the anti-dyskinetic 5-HT1A agonist/D-2 partial agonist sarizotan. In contrast, FSL rats did not develop sensitization of turning and only minor AIMs in response to L-DOPA treatment. The roles of several non-dopamine systems underlying this discrepancy were studied. Unexpectedly, no differences of opioid neuropeptides or serotonin markers were found between FRL and FSL rats. The marked behavioral difference between the FRL and FSL rats was paralleled with the striatal expression of the established marker, c-fos, but also the GABAergic transporter (vGAT), and a hitherto unknown marker, tamalin, that is known to regulate mGluR5 receptor function and postsynaptic organization. This study demonstrates that behavioral and transcriptional responses of non-dopaminergic systems to experimental parkinsonism and L-DOPA are modified in a genetic rat model of depression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy