SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Suchy S.) "

Sökning: WFRF:(Suchy S.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
4.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Balabanski, Anna H., et al. (författare)
  • Incidence of stroke in indigenous populations of countries with a very high human development index : a systematic review
  • 2024
  • Ingår i: Neurology. - : American Academy of Neurology. - 0028-3878 .- 1526-632X. ; 102:5
  • Forskningsöversikt (refereegranskat)abstract
    • Background and objectives: Cardiovascular disease contributes significantly to disease burden among many Indigenous populations. However, data on stroke incidence in Indigenous populations are sparse. We aimed to investigate what is known of stroke incidence in Indigenous populations of countries with a very high Human Development Index (HDI), locating the research in the broader context of Indigenous health.Methods: We identified population-based stroke incidence studies published between 1990 and 2022 among Indigenous adult populations of developed countries using PubMed, Embase, and Global Health databases, without language restriction. We excluded non-peer-reviewed sources, studies with fewer than 10 Indigenous people, or not covering a 35- to 64-year minimum age range. Two reviewers independently screened titles, abstracts, and full-text articles and extracted data. We assessed quality using "gold standard" criteria for population-based stroke incidence studies, the Newcastle-Ottawa Scale for risk of bias, and CONSIDER criteria for reporting of Indigenous health research. An Indigenous Advisory Board provided oversight for the study.Results: From 13,041 publications screened, 24 studies (19 full-text articles, 5 abstracts) from 7 countries met the inclusion criteria. Age-standardized stroke incidence rate ratios were greater in Aboriginal and Torres Strait Islander Australians (1.7-3.2), American Indians (1.2), Sámi of Sweden/Norway (1.08-2.14), and Singaporean Malay (1.7-1.9), compared with respective non-Indigenous populations. Studies had substantial heterogeneity in design and risk of bias. Attack rates, male-female rate ratios, and time trends are reported where available. Few investigators reported Indigenous stakeholder involvement, with few studies meeting any of the CONSIDER criteria for research among Indigenous populations.Discussion: In countries with a very high HDI, there are notable, albeit varying, disparities in stroke incidence between Indigenous and non-Indigenous populations, although there are gaps in data availability and quality. A greater understanding of stroke incidence is imperative for informing effective societal responses to socioeconomic and health disparities in these populations. Future studies into stroke incidence in Indigenous populations should be designed and conducted with Indigenous oversight and governance to facilitate improved outcomes and capacity building.
  •  
11.
  • Roodgar, M., et al. (författare)
  • Chimpanzee and pig-tailed macaque iPSCs: Improved culture and generation of primate cross-species embryos
  • 2022
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 40:9
  • Tidskriftsartikel (refereegranskat)abstract
    • As our closest living relatives, non-human primates uniquely enable explorations of human health, disease, development, and evolution. Considerable effort has thus been devoted to generating induced pluripotent stem cells (iPSCs) from multiple non-human primate species. Here, we establish improved culture methods for chimpanzee (Pan troglodytes) and pig-tailed macaque (Macaca nemestrina) iPSCs. Such iPSCs sponta-neously differentiate in conventional culture conditions, but can be readily propagated by inhibiting endog-enous WNT signaling. As a unique functional test of these iPSCs, we injected them into the pre-implantation embryos of another non-human species, rhesus macaques (Macaca mulatta). Ectopic expression of gene BCL2 enhances the survival and proliferation of chimpanzee and pig-tailed macaque iPSCs within the pre -implantation embryo, although the identity and long-term contribution of the transplanted cells warrants further investigation. In summary, we disclose transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSCs research.
  •  
12.
  • Sancho, Ana, et al. (författare)
  • CHD6 regulates the topological arrangement of the CFTR locus
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:10, s. 2724-2732
  • Tidskriftsartikel (refereegranskat)abstract
    • The control of transcription is regulated through the well-coordinated spatial and temporal interactions between distal genomic regulatory elements required for specialized cell-type and developmental gene expression programs. With recent findings CFTR has served as a model to understand the principles that govern genome-wide and topological organization of distal intra-chromosomal contacts as it relates to transcriptional control. This is due to the extensive characterization of the DNase hypersensitivity sites, modification of chromatin, transcription factor binding sites and the arrangement of these sites in CFTR consistent with the restrictive expression in epithelial cell types. Here, we identified CHD6 from a screen among several chromatin-remodeling proteins as a putative epigenetic modulator of CFTR expression. Moreover, our findings of CTCF interactions with CHD6 are consistent with the role described previously for CTCF in CFTR regulation. Our results now reveal that the CHD6 protein lies within the infrastructure of multiple transcriptional complexes, such as the FACT, PBAF, PAF1C, Mediator, SMC/Cohesion and MLL complexes. This model underlies the fundamental role CHD6 facilitates by tethering cis-acting regulatory elements of CFTR in proximity to these multi-subunit transcriptional protein complexes. Finally, we indicate that CHD6 structurally coordinates a three-dimensional stricture between intragenic elements of CFTR bound by several cell-type specific transcription factors, such as CDX2, SOX18, HNF4α and HNF1α. Therefore, our results reveal new insights into the epigenetic regulation of CFTR expression, whereas the manipulation of CFTR gene topology could be considered for treating specific indications of cystic fibrosis and/or pancreatitis.
  •  
13.
  • Suchy, F. P., et al. (författare)
  • Streamlined and quantitative detection of chimerism using digital PCR
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal chimeras are widely used for biomedical discoveries, from developmental biology to cancer research. However, the accurate quantitation of mixed cell types in chimeric and mosaic tissues is complicated by sample preparation bias, transgenic silencing, phenotypic similarity, and low-throughput analytical pipelines. Here, we have developed and characterized a droplet digital PCR single-nucleotide discrimination assay to detect chimerism among common albino and non-albino mouse strains. In addition, we validated that this assay is compatible with crude lysate from all solid organs, drastically streamlining sample preparation. This chimerism detection assay has many additional advantages over existing methods including its robust nature, minimal technical bias, and ability to report the total number of cells in a prepared sample. Moreover, the concepts discussed here are readily adapted to other genomic loci to accurately measure mixed cell populations in any tissue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy