SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sussman Joel L. Professor) "

Sökning: WFRF:(Sussman Joel L. Professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berg, Lotta, 1985- (författare)
  • Exploring non-covalent interactions between drug-like molecules and the protein acetylcholinesterase
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The majority of drugs are small organic molecules, so-called ligands, that influence biochemical processes by interacting with proteins. The understanding of how and why they interact and form complexes is therefore a key component for elucidating the mechanism of action of drugs. The research presented in this thesis is based on studies of acetylcholinesterase (AChE). AChE is an essential enzyme with the important function of terminating neurotransmission at cholinergic synapses. AChE is also the target of a range of biologically active molecules including drugs, pesticides, and poisons. Due to the molecular and the functional characteristics of the enzyme, it offers both challenges and possibilities for investigating protein-ligand interactions. In the thesis, complexes between AChE and drug-like ligands have been studied in detail by a combination of experimental techniques and theoretical methods. The studies provided insight into the non-covalent interactions formed between AChE and ligands, where non-classical CH∙∙∙Y hydrogen bonds (Y = O or arene) were found to be common and important. The non-classical hydrogen bonds were characterized by density functional theory calculations that revealed features that may provide unexplored possibilities in for example structure-based design. Moreover, the study of two enantiomeric inhibitors of AChE provided important insight into the structural basis of enthalpy-entropy compensation. As part of the research, available computational methods have been evaluated and new approaches have been developed. This resulted in a methodology that allowed detailed analysis of the AChE-ligand complexes. Moreover, the methodology also proved to be a useful tool in the refinement of X-ray crystallographic data. This was demonstrated by the determination of a prereaction conformation of the complex between the nerve-agent antidote HI-6 and AChE inhibited by the nerve agent sarin. The structure of the ternary complex constitutes an important contribution of relevance for the design of new and improved drugs for treatment of nerve-agent poisoning. The research presented in the thesis has contributed to the knowledge of AChE and also has implications for drug discovery and the understanding of biochemical processes in general.
  •  
2.
  • Guo, Xiaohu (författare)
  • Life will find a way : Structural and evolutionary insights into FusB and HisA
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • How do microbes adapt to challenges from the environment? In this thesis, two distinct cases were examined through structural and biochemical methods. In the first, we followed a real-time protein evolution of HisA to a novel function. The second case was fusidic acid (FA) resistance mediated by the protein FusB in Staphylococcus aureus.In the first study, the aim was to understand how mutants of HisA from the histidine biosynthetic pathway could evolve a novel TrpF activity and further evolve to generalist or specialist enzymes. We solved the crystal structure of wild type Salmonella enterica HisA in its apo-state and the structures of the mutants D7N and D7N/D176A in complex with the substrate ProFAR. These two distinct complex structures showed us the coupled conformational changes of HisA and ProFAR before catalysis. We also solved crystal structures of ten mutants, some in complex with substrate or product. The structures indicate that bi-functional mutants adopt distinct loop conformations linked to the two functions and that mutations in specialist enzymes favor one of the conformations. We also observed biphasic relationships in which small changes in the activities of low-performance enzymes had large effects on fitness, until a threshold, above which large changes in enzyme performance had little effect on fitness.Fusidic acid blocks protein translation by locking elongation factor G (EF-G) to the ribosome after GTP hydrolysis in elongation and recycling of bacterial protein synthesis. To understand the rescue mechanism, we solved the crystal structure of FusB at 1.6Å resolution. The structure showed that FusB is a two-domain protein and C-terminal domain contains a treble clef zinc finger. Using hybrid constructs between S. aureus EF-G that binds to FusB, and E. coli EF-G that does not, the binding determinants were located to domain IV of EF-G. This was further supported by small-angle X-ray scattering studies of the FusB·EF-G complex. Using single-molecule methods, we observed FusB frequently binding to the ribosome and rescue of FA-inhibited elongation by effects on the non-rotated state ribosome. Ribosome binding of FusB was confirmed by isothermal titration calorimetry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy