SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svanström Sebastian) "

Sökning: WFRF:(Svanström Sebastian)

  • Resultat 1-31 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Svanström, Sebastian, et al. (författare)
  • Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 7:17, s. 10729-10738
  • Tidskriftsartikel (refereegranskat)abstract
    • The anodic electrodeposition method is investigated as an alternative technique for the preparation of a titanium oxide (TiO 2 ) blocking underlayer (UL) for perovskite solar cells (PSCs). Extremely thin Ti IV -based films are grown from aqueous acidic titanium(iii) chloride in an electrochemical cell at room temperature. This precursor layer is converted to the UL (ED-UL), in a suitable state for PSC applications, by undertaking a sintering step at 450 °C for half an hour. PSCs with the composition of the light-absorbing material FA 0.85 MA 0.10 Cs 0.05 Pb(I 0.87 Br 0.13 ) 3 (FA and MA denote the formamidinium and methylammonium cations, respectively) based on the ED-UL are compared with PSCs with the UL of a standard type prepared by the spray-pyrolysis method at 450 °C from titanium diisopropoxide bis(acetylacetonate) (SP-UL). We obtain power conversion efficiencies (PCEs) of over 20% for mesoscopic perovskite devices employing both ED-ULs and SP-ULs. Slightly higher fill factor values are observed for ED-UL-based devices. In addition, ED-ULs prepared by the same method have also been applied in planar PSCs, resulting in a PCE exceeding 17%, which is comparable to that for similar PSCs with an SP-UL. The preparation of ED-ULs with a lower sintering temperature, 150 °C, has also been examined. The efficiency of a planar PSC incorporating this underlayer was 14%. These results point out to the possibility of applying ED-ULs in flexible planar PSCs in the future.
  •  
2.
  • Cappel, Ute B, et al. (författare)
  • Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells.
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 9:40, s. 34970-34978
  • Tidskriftsartikel (refereegranskat)abstract
    • ) with the element specificity and chemical sensitivity of core-level photoelectron spectroscopy. By carrying out measurements at a synchrotron beamline optimized for low X-ray fluxes, we are able to avoid sample changes due to X-ray illumination and are therefore able to monitor what sample changes are induced by visible illumination only. We find that laser illumination causes partially reversible chemistry in the surface region, including enrichment of bromide at the surface, which could be related to a phase separation into bromide- and iodide-rich phases. We also observe a partially reversible formation of metallic lead in the perovskite structure. These processes occur on the time scale of minutes during illumination. The presented methodology has a large potential for understanding light-induced chemistry in photoactive materials and could specifically be extended to systematically study the impact of morphology and composition on the photostability of metal halide perovskites.
  •  
3.
  • Constantino, Sebastian, et al. (författare)
  • Ekonomisk statistik om sektorer som är beroende av havet : Underlag till inledande bedömning 2018 inom havsmiljöförordningen
  • 2017
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Den totala omsättningen i de maritima näringarna är omkring 160 000 miljoner kronor, vilket utgör cirka 2,2 procent av Sveriges totala omsättning. I dessa näringar uppgår den totala anställningen till omkring 73 000 som utgör 2,8 procent av Sveriges totala anställningar. I en uppdelning av maritima näringar i sektorer är marin turism den största, följt av sjöfart och hamnar och stödtjänster.Vi gav Statistiska centralbyrån (SCB) i uppdrag att identifiera och redovisa den ekonomiska betydelsen av Sveriges maritima näringar. Resultatet redovisas i denna rapport. Det kommer också att användas som en del i vår inledande bedömning för havsmiljöförordningen (havsmiljödirektivet).
  •  
4.
  • Franchi, Daniele, et al. (författare)
  • Effect of the Ancillary Ligand on the Performance of Heteroleptic Cu(I) Diimine Complexes as Dyes in Dye-Sensitized Solar Cells
  • 2022
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 5:2, s. 1460-1470
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of heteroleptic Cu(I) diimine complexes with different ancillary ligands and 6,6'-dimethyl-2,2'-bipyridine-4,4'-dibenzoic acid (dbda) as the anchoring ligand were selfassembled on TiO2 surfaces and used as dyes for dye-sensitized solar cells (DSSCs). The binding to the TiO2 surface was studied by hard X-ray photoelectron spectroscopy for a brominecontaining complex, confirming the complex formation. The performance of all complexes was assessed and rationalized on the basis of their respective ancillary ligand. The DSSC photocurrent-voltage characteristics, incident photon-to-current conversion efficiency (IPCE) spectra, and calculated lowest unoccupied molecular orbital (LUMO) distributions collectively show a push-pull structural dye design, in which the ancillary ligand exhibits an electron-donating effect that can lead to improved solar cell performance. By analyzing the optical properties of the dyes and their solar cell performance, we can conclude that the presence of ancillary ligands with bulky substituents protects the Cu(I) metal center from solvent coordination constituting a critical factor in the design of efficient Cu(I)-based dyes. Moreover, we have identified some components in the I-/I-3(-)-based electrolyte that causes dissociation of the ancillary ligand, i.e., TiO2 photoelectrode bleaching. Finally, the detailed studies on one of the dyes revealed an electrolyte-dye interaction, leading to a dramatic change of the dye properties when adsorbed on the TiO2 surface.
  •  
5.
  • Garcia Fernandez, Alberto, et al. (författare)
  • Experimental and Theoretical Core Level and Valence Band Analysis of Clean Perovskite Single Crystal Surfaces
  • 2022
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 18:13
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed understanding of the surface and interface properties of lead halide perovskites is of interest for several applications, in which these materials may be used. To develop this understanding, the study of clean crystalline surfaces can be an important stepping stone. In this work, the surface properties and electronic structure of two different perovskite single crystal compositions (MAPbI(3) and Cs(x)FA(1-)(x)PbI(3)) are investigated using synchrotron-based soft X-ray photoelectron spectroscopy (PES), molecular dynamics simulations, and density functional theory. The use of synchrotron-based soft X-ray PES enables high surface sensitivity and nondestructive depth-profiling. Core level and valence band spectra of the single crystals are presented. The authors find two carbon 1s contributions at the surface of MAPbI(3) and assign these to MA(+) ions in an MAI-terminated surface and to MA(+) ions below the surface. It is estimated that the surface is predominantly MAI-terminated but up to 30% of the surface can be PbI2-terminated. The results presented here can serve as reference spectra for photoelectron spectroscopy investigations of technologically relevant polycrystalline thin films, and the findings can be utilized to further optimize the design of device interfaces.
  •  
6.
  • Garcia Fernandez, Alberto, et al. (författare)
  • Interface Energy Alignment between Lead Halide Perovskite Single Crystals and TIPS-Pentacene
  • 2023
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 62:38, s. 15412-15420
  • Tidskriftsartikel (refereegranskat)abstract
    • At present, there is a huge development in optoelectronic applications using lead halide perovskites. Considering that device performance is largely governed by the transport of charges across interfaces and, therefore, the interfacial electronic structure, fundamental investigations of perovskite interfaces are highly necessary. In this study, we use high-resolution soft X-ray photoelectron spectroscopy based on synchrotron radiation to explore the interfacial energetics for the molecular layer of TIPS-pentacene and lead halide perovskite single crystals. We perform ultrahigh vacuum studies on multiple thicknesses of an in situ formed interface of TIPS-pentacene with four different in situ cleaved perovskite single crystals (MAPbI3, MAPbBr3, FAPbBr3, and CsxFA1-xPbBryI3-y). Our findings reveal a substantial shift of the TIPS-pentacene energy levels toward higher binding energies with increasing thickness, while the perovskite energy levels remain largely unaffected regardless of their composition. These shifts can be interpreted as band bending in the TIPS-pentacene, and such effects should be considered when assessing the energy alignment at perovskite/organic transport material interfaces. Furthermore, we were able to follow a reorganization on the MAPbI3 surface with the transformation of the surface C 1s into bulk C 1s.
  •  
7.
  • Hultqvist, Adam, et al. (författare)
  • SnOx Atomic Layer Deposition on Bare Perovskite-An Investigation of Initial Growth Dynamics, Interface Chemistry, and Solar Cell Performance
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:1, s. 510-522
  • Tidskriftsartikel (refereegranskat)abstract
    • High-end organic-inorganic lead halide perovskite semitransparent p-i-n solar cells for tandem applications use a phenyl-C-61-butyric acid methyl ester (PCBM)/atomic layer deposition (ALD)-SnOx electron transport layer stack. Omitting the PCBM would be preferred for manufacturing, but has in previous studies on (FA,MA)Pb(Br,I)(3) and (Cs,FA)Pb(Br,I)(3) and in this study on Cs(0)(.0)(5)FA(0.79)MA(0.16)PbBr(0.51)I(2.49) (perovskite) led to poor solar cell performance because of a bias-dependent light-generated current. A direct ALD-SnOx exposure was therefore suggested to form a nonideal perovskite/SnOx interface that acts as a transport barrier for the light-generated current. To further investigate the interface formation during the initial ALD SnOx growth on the perovskite, the mass dynamics of monitor crystals coated by partial p-i-n solar cell stacks were recorded in situ prior to and during the ALD using a quartz crystal microbalance. Two major finds were made. A mass loss was observed prior to ALD for growth temperatures above 60 degrees C, suggesting the decomposition of the perovskite. In addition, a mostly irreversible mass gain was observed during the first exposure to the Sn precursor tetrakis(dimethylamino)tin(IV) that is independent of growth temperature and that disrupts the mass gain of the following 20-50 ALD cycles. The chemical environments of the buried interface were analyzed by soft and hard X-ray photoelectron spectroscopy for a sample with 50 ALD cycles of SnOx on the perovskite. Although measurements on the perovskite bulk below and the SnOx film above did not show chemical changes, additional chemical states for Pb, Br, and N as well as a decrease in the amount of I were observed in the interfacial region. From the analysis, these states and not the heating of the perovskite were concluded to be the cause of the barrier. This strongly suggests that the detrimental effects can be avoided by controlling the interfacial design.
  •  
8.
  • Jacobsson, Jesper, 1984-, et al. (författare)
  • Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:25, s. 13548-13557
  • Tidskriftsartikel (refereegranskat)abstract
    • A trend in high performing lead halide perovskite solar cell devices has been increasing compositional complexity by successively introducing more elements, dopants, and additives into the structure; and some of the latest top efficiencies have been achieved with a quadruple cation mixed halide perovskite Cs(x)FA(y)MA(z)Rb(1-x-y-z)PbBr(q)I(3-9). This paper continues this trend by exploring doping of mixed lead halide perovskites, FA(0.83)MA(0.17)PbBr(0.51)I(2.49), with an extended set of alkali cations, i.e., Cs+, Rb+, K+, and Na+, as well as combinations of them. The doped perovskites were investigated with X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, hard X-ray photoelectron spectroscopy, UV-vis, steady state fluorescence, and ultrafast transient absorption spectroscopy. Solar cell devices were made as well. Cs+ can replace the organic cations in the perovskite structure, but Rb+, K+, and Na+ do not appear to do that. Despite this, samples doped with K and Na have substantially longer fluorescence lifetimes, which potentially could be beneficial for device performance.
  •  
9.
  • Jacobsson, T. Jesper, 1984-, et al. (författare)
  • 2-Terminal CIGS-perovskite tandem cells : A layer by layer exploration
  • 2020
  • Ingår i: Solar Energy. - : Elsevier BV. - 0038-092X .- 1471-1257. ; 207, s. 270-288
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on the development of 2-terminal CIGS-perovskite tandem solar cells by exploring a range of stack sequences and synthetic procedures for depositing the associated layers. In the end, we converged at a stack sequence composed of SLG/Mo/CIGS/CdS/i-ZnO/ZnO:Al/NiO/PTAA/Perovskite/LiF/PCBM/SnO2/ITO. With this architecture, we reached performances only about 1% lower than the corresponding 4-terminal tandem cells, thus demonstrating functional interconnects between the two sub-cells while grown monolithically on top of each other. We go through the stack, layer-by-layer, discussing their deposition and the results, from which we can conclude what works, what does not work, and what potentially could work after additional modifications. The challenges for a successful 2-terminal tandem device include: how to deal with, or decrease, the surface roughness of the CIGS-stack, how to obtain uniform coverage of the layers between the CIGS and the perovskite while also obtaining a benign interface chemistry, and how to tune the band gaps of both the CIGS and the perovskite to obtain good optical matching. The investigation was based on CIGS with a power conversion efficiency around 14%, and perovskites with an efficiency around 12%, resulting in 2-terminal tandem cells with efficiencies of 15–16%. The results indicate that by using higher performing CIGS and perovskite sub-cells, it should be possible to manufacture highly efficient 2-terminal CIGS-perovskite tandem devices by using the protocols, principles, and procedures developed and discussed in this paper.
  •  
10.
  • Johansson, Fredrik, et al. (författare)
  • Femtosecond and Attosecond Electron-Transfer Dynamics in PCPDTBT:PCBM Bulk Heterojunctions
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 122:24, s. 12605-12614
  • Tidskriftsartikel (refereegranskat)abstract
    • Charge separation efficiency is a crucial parameter for photovoltaic devices-polymers consisting of alternating electron-rich and electron-deficient parts can achieve high such efficiencies, for instance, together with a fullerene electron acceptor. This offers a viable path toward solar cells with organic bulk heterojunctions. Here, we measured the charge-transfer times in the femtosecond and attosecond regimes via the decay of sulfur is X-ray core excited states (with the core-hole clock method) in blends of a low-band gap polymer {PCPDTBT [poly[2,6-(4,4-bis (2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-1/1 dithiophene)-alt-4,7- (2,1,3-benzothiadiazole)]]} consisting of a cyclopentadithiophene electron-rich part and a benzothiadiazole electron-deficient part. The constituting parts of the bulk heterojunction were varied by adding the fullerene derivative PCBM ([6,6]-phenyl-C-61-butyric acid methyl ester) (weight ratio of polymer/PCBM as 1:0, 1:1, 1:2, and 1:3). For low-energy excitations, the charge-transfer time varies to the largest extent for the thiophene donor part. The charge-transfer time in the 1:2 blend is reduced by 86% compared to that of pristine PCPDTBT. At higher energy excitations, the charge-transfer time does not vary with the chemical environment, as this regime is dominated by intramolecular conduction that yields ultrafast charge-transfer times for all blends, approaching 170 as. We thus demonstrate that the core-hole clock method applied to a series with changing composition can give information about local electron dynamics (with chemical specificity) at interfaces between the constituting parts the crucial part of a bulk heterojunction where the initial charge separation occurs.
  •  
11.
  • Kammlander, Birgit, et al. (författare)
  • Thermal degradation of lead halide perovskite surfaces
  • 2022
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry. - 1359-7345 .- 1364-548X. ; 58:97, s. 13523-13526
  • Tidskriftsartikel (refereegranskat)abstract
    • Commercial use of lead halide perovskites requires improved thermal stability and therefore a better understanding of their degradation mechanisms. The thermal degradation of three clean perovskite single crystal surfaces (MAPbI3, MAPbBr3, FAPbBr3) was investigated using synchrotron-based photoelectron spectroscopy. Central findings are that the halide has a large impact on thermal stability and that the degradation of formamidnium results in the formation of a new organic species at the FAPbBr3 crystal surface. 
  •  
12.
  • Man, Gabriel, et al. (författare)
  • Electronic coupling between the unoccupied states of the organic and inorganic sublattices of methylammonium lead iodide : A hybrid organic-inorganic perovskite single crystal
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 104:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic-inorganic halide perovskites have been intensively reinvestigated due to their applications, yet the optoelectronic function of the organic cation remains unclear. Through organic-selective resonant Auger electron spectroscopy measurements on well-defined single-crystal surfaces, we find evidence for electronic coupling in the unoccupied states between the organic and inorganic sublattices of the prototypical hybrid perovskite, which is contrary to the notion based on previous studies that the organic cation is electronically inert. The coupling is relevant for electron dynamics in the material and for understanding optoelectronic functionality.
  •  
13.
  • Saki, Zahra, et al. (författare)
  • The synergistic effect of dimethyl sulfoxide vapor treatment and C-60 electron transporting layer towards enhancing current collection in mixed-ion inverted perovskite solar cells
  • 2018
  • Ingår i: Journal of Power Sources. - : ELSEVIER SCIENCE BV. - 0378-7753 .- 1873-2755. ; 405, s. 70-79
  • Tidskriftsartikel (refereegranskat)abstract
    • Inverted perovskite solar cells (PSCs) have been introduced as better candidate for roll-to-roll printing and scaleup than their conventional configuration counterparts, while their fabrication is technically more demanding. The common light absorbing layer in inverted PSCs is the single cation methylammonium lead iodide (MAPbI(3)) perovskite, whereas mixed-ion perovskites are chemically more stable. In mixed-ion perovskites, where FA (formamidinium) is the main replacement for MA, the electron affinity is larger than in MAPbI3 perovskites, leading to possible barriers against photoelectron collection by the electron transporting layer (ETL). In this paper we report on a mixed-ion (FAPbI(3))(0.83)(MAPbBr(3))(0.17) inverted PSC with improved photocurrent through using a dimethyl sulfoxide vapor treatment of perovskite layer and replacing the conventional [6,6]-phenyl-C-71 butyric acid methyl ester (PC70BM) with C-60/bathocuproine (BCP) as more effective ETL. The treatment of perovskite layer results in reduction of impurity phases of 8-FAPbI(3) and Pbl(2). Photoluminescence and open circuit voltage decay data demonstrate better charge carrier collection by the C-60/BCP compared to the PC70BM ETL, and an electron barrier for the back flow of electrons from ETL to perovskite. Our improvements in perovskite crystalization and electron transfer layer simultaneously lead to increasing the current density from 10 to 21 mA cm(-2).
  •  
14.
  • Sloboda, Tamara, et al. (författare)
  • A method for studying pico to microsecond time-resolved core-level spectroscopy used to investigate electron dynamics in quantum dots
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved photoelectron spectroscopy can give insights into carrier dynamics and offers the possibility of element and site-specific information through the measurements of core levels. In this paper, we demonstrate that this method can access electrons dynamics in PbS quantum dots over a wide time window spanning from pico- to microseconds in a single experiment carried out at the synchrotron facility BESSY II. The method is sensitive to small changes in core level positions. Fast measurements at low pump fluences are enabled by the use of a pump laser at a lower repetition frequency than the repetition frequency of the X-ray pulses used to probe the core level electrons: Through the use of a time-resolved spectrometer, time-dependent analysis of data from all synchrotron pulses is possible. Furthermore, by picosecond control of the pump laser arrival at the sample relative to the X-ray pulses, a time-resolution limited only by the length of the X-ray pulses is achieved. Using this method, we studied the charge dynamics in thin film samples of PbS quantum dots on n-type MgZnO substrates through time-resolved measurements of the Pb 5d core level. We found a time-resolved core level shift, which we could assign to electron injection and charge accumulation at the MgZnO/PbS quantum dots interface. This assignment was confirmed through the measurement of PbS films with different thicknesses. Our results therefore give insight into the magnitude of the photovoltage generated specifically at the MgZnO/PbS interface and into the timescale of charge transport and electron injection, as well as into the timescale of charge recombination at this interface. It is a unique feature of our method that the timescale of both these processes can be accessed in a single experiment and investigated for a specific interface.
  •  
15.
  •  
16.
  • Sloboda, Tamara, et al. (författare)
  • Unravelling the ultrafast charge dynamics in PbS quantum dots through resonant Auger mapping of the sulfur K-edge
  • 2022
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 12:49, s. 31671-31679
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a great fundamental interest in charge dynamics of PbS quantum dots, as they are promising for application in photovoltaics and other optoelectronic devices. The ultrafast charge transport is intriguing, offering insight into the mechanism of electron tunneling processes within the material. In this study, we investigated the charge transfer times of PbS quantum dots of different sizes and non-quantized PbS reference materials by comparing the propensity of localized or delocalized decays of sulfur 1s core hole states excited by X-rays. We show that charge transfer times in PbS quantum dots decrease with excitation energy and are similar at high excitation energy for quantum dots and non-quantized PbS. However, at low excitation energies a distinct difference in charge transfer time is observed with the fastest charge transfer in non-quantized PbS and the slowest in the smallest quantum dots. Our observations can be explained by iodide ligands on the quantum dots creating a barrier for charge transfer, which reduces the probability of interparticle transfer at low excitation energies. The probability of intraparticle charge transfer is limited by the density of available states which we describe according to a wave function in a quantum well model. The stronger quantum confinement effect in smaller PbS quantum dots is manifested as longer charge transfer times relative to the larger quantum dots at low excitation energies.
  •  
17.
  • Sloboda, Tamara, et al. (författare)
  • Unravelling the ultrafast charge dynamics in PbS quantum dotsthrough resonant Auger mapping of the sulfur K-edge
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is a great fundamental interest in charge dynamics of PbS quantum dots, as they arepromising for application in photovoltaics and other optoelectronic devices. The ultrafastcharge transport is intriguing, offering insight into the mechanism of electron tunnelingprocesses within the material. In this study we investigated the charge transfer times of PbSquantum dots of different sizes and non-quantized PbS reference materials by comparing thepropensity of localized or delocalized decays of sulfur 1s core hole states excited by X-rays.We show that charge transfer times in PbS quantum dots decrease with excitation energy andare similar at high excitation energy for quantum dots and non-quantized PbS. However, atlow excitation energies a distinct difference in charge transfer time is observed with thefastest charge transfer in non-quantized PbS and the slowest in the smallest quantum dots.Our observations can be explained by iodide ligands on the quantum dots creating a barrierfor charge transfer, which reduces the probability of interparticle transfer at low excitationenergies. The probability of intraparticle charge transfer is limited by the density of availablestates which we describe according to a wavefunction in a quantum well model. The strongerquantum confinement effect in smaller PbS quantum dots is manifested as longer chargetransfer times relative to the larger quantum dots at low excitation energies.
  •  
18.
  •  
19.
  • Sterling, Cody M., 1993-, et al. (författare)
  • Electronic Structure and Chemical Bonding in Methylammonium Lead Triiodide and Its Precursor Methylammonium Iodide
  • 2022
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society. - 1932-7447 .- 1932-7455. ; 126:47, s. 20143-20154
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed examination of the electronic structures of methylammonium lead triiodide (MAPI) and methylammonium iodide (MAI) is performed with ab initio molecular dynamics (AIMD) simulations based on density functional theory, and the theoretical results are compared to experimental probes. The occupied valence bands of a MAPI single crystal and MAI powder are probed with X-ray photoelectron spectroscopy, and the conduction bands are probed from the perspective of nitrogen K-edge X-ray absorption spectroscopy. Combined, the theoretical simulations and the two experimental techniques allow for a dissection of the electronic structure unveiling the nature of chemical bonding in MAPI and MAI. Here, we show that the difference in band gap between MAPI and MAI is caused chiefly by interactions between iodine and lead but also weaker interactions with the MA+counterions. Spatial decomposition of the iodine p levels allows for analysis of Pb-I σ bonds and πinteractions, which contribute to this effect with the involvement of the Pb 6p levels. Differences in hydrogen bonding between the two materials, seen in the AIMD simulations, are reflected in nitrogen valence orbital composition and in nitrogen K-edge X-ray absorption spectra.
  •  
20.
  • Sterling, Cody M., et al. (författare)
  • Sensitivity of Nitrogen K-Edge X-ray Absorption to Halide Substitution and Thermal Fluctuations in Methylammonium Lead-Halide Perovskites
  • 2021
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:15, s. 8360-8368
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of hybrid perovskite materials in solar cells crucially depends on their electronic properties, and it is important to investigate contributions to the total electronic structure from specific components in the material. In a combined theoretical and experimental study of CH3NH3PbI3-methylammonium lead triiodide (MAPI)-and its bromide cousin CH3NH3PbBr3 (MAPB), we analyze nitrogen K-edge (N Is-to-2p*) X-ray absorption (XA) spectra measured in MAPI and MAPB single crystals. This permits comparison of spectral features to the local character of unoccupied molecular orbitals on the CH3NH3+ (MA(+)) counterions and allows us to investigate how thermal fluctuations, hydrogen bonding, and halide-ion substitution influence the XA spectra as a measure of the local electronic structure. In agreement with the experiment, the simulated spectra for MAPI and MAPB show close similarity, except that the MAPB spectral features are blue-shifted by +0.31 eV. The shift is shown to arise from the intrinsic difference in the electronic structure of the two halide atoms rather than from structural differences between the materials. In addition, from the spectral sampling analysis of molecular dynamics simulations, clear correlations between geometric descriptors(N-C, N-H, and H center dot center dot center dot I/Br distances) and spectral features are identified and used to explain the spectral shapes.
  •  
21.
  • Svanström, Sebastian, et al. (författare)
  • Degradation Mechanism of Silver Metal Deposited on Lead Halide Perovskites
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:6, s. 7212-7221
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead halide perovskite solar cells have significantly increased in both efficiency and stability over the last decade. An important aspect of their longterm stability is the reaction between the perovskite and other materials in the solar cell. This includes the contact materials and their degradation if they can potentially come into contact through, e.g., pinholes or material diffusion and migration. Here, we explore the interactions of silver contacts with lead halide perovskites of different compositions by using a model system where thermally evaporated silver was deposited directly on the surface of the perovskites. Using X-ray photoelectron spectroscopy with support from scanning electron microscopy, X-ray diffraction, and UV-visible absorption spectroscopy, we studied the film formation and degradation of silver on perovskites with different compositions. The deposited silver does not form a continuous silver film but instead tends to form particles on a bare perovskite surface. These particles are initially metallic in character but degrade into AgI and AgBr over time. The degradation and migration appear unaffected by the replacement of methylammonium with cesium but are significantly slowed down by the complete replacement of iodide with bromide. The direct contact between silver and the perovskite also significantly accelerates the degradation of the perovskite, with a significant loss of organic cations and the possible formation of PbO, and, at the same time, changed the surface morphology of the iodide-rich perovskite interface. Our results further indicate that an important degradation pathway occurred through gas-phase perovskite degradation products. This highlights the importance of control over the interface materials and the use of completely hermetical barrier layers for the long-term stability and therefore the commercial viability of silver electrodes.
  •  
22.
  • Svanström, Sebastian, et al. (författare)
  • Direct Measurements of Interfacial Photovoltage and Band Alignment in Perovskite Solar Cells Using Hard X-ray Photoelectron Spectroscopy
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 15:9, s. 12485-12494
  • Tidskriftsartikel (refereegranskat)abstract
    • A heterojunction is the key junction for charge extraction in many thin film solar cell technologies. However, the structure and band alignment of the heterojunction in the operating device are often difficult to predict from calculations and, due to the complexity and narrow thickness of the interface, are difficult to measure directly. In this study, we demonstrate a technique for direct measurement of the band alignment and interfacial electric field variations of a fully functional lead halide perovskite solar cell structure under operating conditions using hard X-ray photoelectron spectroscopy (HAXPES). We describe the design considerations required in both the solar cell devices and the measurement setup and show results for the perovskite, hole transport, and gold layers at the back contact of the solar cell. For the investigated design, the HAXPES measurements suggest that 70% of the photovoltage was generated at this back contact, distributed rather equally between the hole transport material/gold interface and the perovskite/hole transport material interface. In addition, we were also able to reconstruct the band alignment at the back contact at equilibrium in the dark and at open circuit under illumination.
  •  
23.
  • Svanström, Sebastian, et al. (författare)
  • Effect of halide ratio and Cs+ addition on the photochemical stability of lead halide perovskites
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 6:44, s. 22134-22144
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead halide perovskite solar cells with multi-cation/mixed halide materials now give power conversion efficiencies of more than 20%. The stability of these mixed materials has been significantly improved through the addition of Cs+ compared to the original methylammonium lead iodide. However, it remains one of the most significant challenges for commercialisation. In this study, we use photoelectron spectroscopy (PES) in combination with visible laser illumination to study the photo-stability of perovskite films with different compositions. These include Br : I ratios of 50 : 50 and 17 : 83 and compositions with and without Cs+. For the samples without Cs and the 50 : 50 samples, we found that the surface was enriched in Br and depleted in I during illumination and that some of the perovskite decomposed into Pb-0, organic halide salts, and iodine. After illumination, both of these reactions were partially reversible. Furthermore, the surfaces of the films were enriched in organic halide salts indicating that the cations were not degraded into volatile products. With the addition of Cs+ to the samples, photo-induced changes were significantly suppressed for a 50 : 50 bromide to iodide ratio and completely suppressed for perovskites with a 17 : 83 ratio at light intensities exceeding 1 sun equivalent.
  •  
24.
  • Svanström, Sebastian, et al. (författare)
  • Effect of halide ratio and Cs+ addition on the photochemical stability of lead halide perovskites
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 6:44, s. 22134-22144
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead halide perovskite solar cells with multi-cation/mixed halide materials now give power conversion efficiencies of more than 20%. The stability of these mixed materials has been significantly improved through the addition of Cs+ compared to the original methylammonium lead iodide. However, it remains one of the most significant challenges for commercialisation. In this study, we use photoelectron spectroscopy (PES) in combination with visible laser illumination to study the photo-stability of perovskite films with different compositions. These include Br : I ratios of 50 : 50 and 17 : 83 and compositions with and without Cs+. For the samples without Cs and the 50 : 50 samples, we found that the surface was enriched in Br and depleted in I during illumination and that some of the perovskite decomposed into Pb0, organic halide salts, and iodine. After illumination, both of these reactions were partially reversible. Furthermore, the surfaces of the films were enriched in organic halide salts indicating that the cations were not degraded into volatile products. With the addition of Cs+ to the samples, photo-induced changes were significantly suppressed for a 50 : 50 bromide to iodide ratio and completely suppressed for perovskites with a 17 : 83 ratio at light intensities exceeding 1 sun equivalent.
  •  
25.
  •  
26.
  • Svanström, Sebastian, et al. (författare)
  • The Complex Degradation Mechanism of Copper Electrodes on Lead Halide Perovskites
  • 2022
  • Ingår i: ACS Materials Science Au. - : American Chemical Society (ACS). - 2694-2461. ; 2:3, s. 301-312
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead halide perovskitesolar cells have reached power conversionefficiencies during the past few years that rival those of crystallinesilicon solar cells, and there is a concentrated effort to commercializethem. The use of gold electrodes, the current standard, is prohibitivelycostly for commercial application. Copper is a promising low-costelectrode material that has shown good stability in perovskite solarcells with selective contacts. Furthermore, it has the potential tobe self-passivating through the formation of CuI, a copper salt whichis also used as a hole selective material. Based on these opportunities,we investigated the interface reactions between lead halide perovskitesand copper in this work. Specifically, copper was deposited on theperovskite surface, and the reactions were followed in detail usingsynchrotron-based and in-house photoelectron spectroscopy. The resultsshow a rich interfacial chemistry with reactions starting upon depositionand, with the exposure to oxygen and moisture, progress over manyweeks, resulting in significant degradation of both the copper andthe perovskite. The degradation results not only in the formationof CuI, as expected, but also in the formation of two previously unreporteddegradation products. The hope is that a deeper understanding of theseprocesses will aid in the design of corrosion-resistant copper-basedelectrodes.
  •  
27.
  • Svanström, Sebastian, 1990- (författare)
  • The life and death of perovskites : Interfacial function and degradation of lead halide perovskites studied by photoelectron spectroscopy
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lead halide perovskite solar cells are a promising new technology which could soon see widespread commercial application but is partly held back by poor long-term stability. In this thesis, photoelectron spectroscopy (PES) is used to study the dynamical processes at the surface or interfaces of lead halide perovskite materials. Some of these processes are responsible for the different types of degradation while others are essential for the function of the solar cell. The work includes a range of lead perovskite compositions with the general formula APbX3, in which A is a monovalent cation, and often organic (e.g. formamidinium or methylammonium), and X is a halide anion, typically Br- or I-. The compositions can also include mixtures of cations at the A and anions at the X site.Part of this thesis is dedicated to investigating the degradation of the perovskite surface in response to both intense visible light and X-ray irradiation. The results show that intense illumination induces the decomposition of the perovskite into metallic lead, halide gas and organic halide salt, but also indicate how this process can be suppressed by the addition of small amounts of Cs+ ions and by adjusting the relative amounts of halides. A different process, induced by the X-ray radiolysis of the organic cation, is shown to consume rather than form metallic lead.Another part of this thesis is dedicated to the investigation of the reactions at the interfaces between the perovskite and silver, copper or SnOx. The results show that both copper and silver react rapidly with the perovskite forming metal halides and that the metal can diffuse into the perovskite. Copper is particularly reactive, leading to the formation of two new compounds and the bulk degradation of the perovskite. The SnOx is significantly more stable but material intermixing results in the formation of a thin interface layer that may hinder charge extraction. Finally, a method for measuring both interfacial photovoltage and band alignment in a fully functional perovskite solar cell using hard X-ray photoelectron spectroscopy (HAXPES) is demonstrated. The results showcase the design considerations for the samples and the measurement setup and the potential of this technique. In summary, this thesis shows the suitability of PES for studying both the function and degradation of surfaces and interfaces of complex dynamical systems. It serves as a guide for future studies by highlighting challenges and possibilities faced when working with these systems.
  •  
28.
  • Svanström, Sebastian, 1990-, et al. (författare)
  • X-ray stability and degradation mechanism of lead halide perovskites and lead halides
  • 2021
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 23:21, s. 12479-12489
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead halide perovskites have become a leading material in the field of emerging photovoltaics and optoelectronics. Significant progress has been achieved in improving the intrinsic properties and environmental stability of these materials. However, the stability of lead halide perovskites to ionising radiation has not been widely investigated. In this study, we investigated the radiolysis of lead halide perovskites with organic and inorganic cations under X-ray irradiation using synchrotron based hard X-ray photoelectron spectroscopy. We found that fully inorganic perovskites are significantly more stable than those containing organic cations. In general, the degradation occurs through two different, but not mutually exclusive, pathways/mechanisms. One pathway is induced by radiolysis of the lead halide cage into halide salts, halogen gas and metallic lead and appears to be catalysed by defects in the perovskite. The other pathway is induced by the radiolysis of the organic cation which leads to formation of organic degradation products and the collapse of the perovskite structure. In the case of Cs0.17FA0.83PbI3, these reactions result in products with a lead to halide ratio of 1 : 2 and no formation of metallic lead. The radiolysis of the organic cation was shown to be a first order reaction with regards to the FA+ concentration and proportional to the X-ray flux density with a radiolysis rate constant of 1.6 × 10-18 cm2 per photon at 3 keV or 3.3 cm2 mJ-1. These results provide valuable insight for the use of lead halide perovskite based devices in high radiation environments, such as in space environments and X-ray detectors, as well as for investigations of lead halide perovskites using X-ray based techniques.
  •  
29.
  • Sveinbjörnsson, Kári, et al. (författare)
  • Preparation of mixed-ion and inorganic perovskite films using water and isopropanol as solvents for solar cell applications
  • 2018
  • Ingår i: Sustainable Energy & Fuels. - : The Royal Society of Chemistry. - 2398-4902. ; 2:3, s. 606-615
  • Tidskriftsartikel (refereegranskat)abstract
    • Presently, the most efficient lead halide perovskite solar cells are manufactured by using high-boiling point organic solvents to dissolve the perovskite precursor materials prior to the perovskite formation. Previously, efforts have been made to exchange the said solvents for water with some success. Herein, we build on that work to develop a procedure for synthesising perovskite absorbers using only water and isopropanol as solvents. Our technique can be utilised for fabricating many different perovskite compositions, organic and inorganic. The technique is based on the high solubility of metal nitrates, such as lead(ii) nitrate and caesium(i) nitrate, in water and, respectively, their poor solubilities in isopropanol. The inclusion of CsNO3 to Pb(NO3)2 films does not result in a phase separation of the perovskite material as one would expect when using lead(ii) halide precursor films. Using the perovskite composition Cs0.1FA0.9Pb(I0.83Br0.17)3 we were able to reach an average solar cell power conversion efficiency of 13.0%. Furthermore, the technique can be applied to many different perovskite compositions making it appealing for large-scale manufacturing of perovskite solar cells.
  •  
30.
  • Vijayan, Anuja, et al. (författare)
  • Simple Method for Efficient Slot-Die Coating of MAPbI(3) Perovskite Thin Films in Ambient Air Conditions
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 3:5, s. 4331-4337
  • Tidskriftsartikel (refereegranskat)abstract
    • Scalable methods for deposition of lead halide perovskite thin films are required to enable commercialization of the highly promising perovskite photovoltaics. Here, we have developed a slot-die coating process under ambient conditions for methylammonium lead iodide (MAPbI(3)) perovskite on heated substrates (about 90 degrees C on the substrate surface). Dense, highly crystalline perovskite films with large grains (100-200 mu m) were obtained by careful adjustment of the deposition parameters, using solutions that are similar but more dilute than those used in typical spin-coating procedures. Without any further after treatments, such as antisolvent treatment or vapor annealing, we achieved power conversion efficiencies up of 14.5% for devices with the following structure: conducting tin oxide glass (FTO)/TiO2/MAPbI(3)/spiro-MeOTAD/Au. The performance was limited by the significant roughness of the deposited films, resulting from the hot-casting method, and the relatively high deposition temperature, which led to a defect-rich surface due to loss of MAI.
  •  
31.
  • Zhang, Xiaoliang, et al. (författare)
  • Probing and Controlling Surface Passivation of PbS Quantum Dot Solid for Improved Performance of Infrared Absorbing Solar Cells
  • 2019
  • Ingår i: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 31:11, s. 4081-4091
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface properties of colloidal quantum dots (CQDs) are critical for the transportation and recombination of the photoinduced charge carrier in CQD solar cells, therefore dominating the photovoltaic performance. Herein, PbS CQD passivated using liquid-state ligand exchange (LSLX) and solid-state ligand exchange (SSLX) strategies are in detail investigated using photoelectron spectroscopy (PES), and solar cell devices are prepared to understand the link between the CQD surface properties and the solar cell function. PES using different energies in the soft and hard Xray regime is applied to study the surface and bulk properties of the CQDs, and the results show more effective surface passivation of the CQDs prepared with the LSLX strategy and less formation of lead-oxide. The CQD solar cells prepared with LSLX strategy show higher performance, and the photoelectric measurements suggest that the recombination of photoinduced charges is reduced for the solar cell prepared with the LSLX approach. Meanwhile, the fabricated solar cells exhibit good stability. This work provides important insights into how to fine-tune the CQD surface properties by improving the CQD passivation, and how this is linked to further improvements of the device photovoltaic performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-31 av 31
Typ av publikation
tidskriftsartikel (27)
annan publikation (2)
rapport (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Cappel, Ute B. (28)
Rensmo, Håkan (22)
Boschloo, Gerrit (10)
Lindblad, Andreas (7)
Johansson, Erik (6)
Giangrisostomi, Erik ... (6)
visa fler...
Ovsyannikov, Ruslan (6)
Johansson, Fredrik (5)
Odelius, Michael (5)
Aitola, Kerttu (4)
Jacobsson, T. Jesper (4)
Man, Gabriel (4)
Johansson, Erik M. J ... (3)
Philippe, Bertrand, ... (2)
Edoff, Marika, 1965- (2)
Hultqvist, Adam (2)
Sun, Licheng, 1962- (2)
Bidermane, Ieva (2)
Sveinbjörnsson, Kári (2)
Butorin, Sergei M. (2)
Berggren, Elin (2)
Kühn, Danilo (2)
Zhang, Xiaoliang (2)
Svensson, Svante, 19 ... (2)
Leitner, Torsten (2)
Mårtensson, Nils, 19 ... (2)
Zhao, L. (1)
Kuhn, D. (1)
Unger, Eva (1)
Kloo, Lars (1)
Riekehr, Lars (1)
Zhang, Wei (1)
Grätzel, M. (1)
Butorin, Sergei (1)
Andrei, Virgil (1)
Sinha, S (1)
Lanzilotto, Valeria (1)
Hagfeldt, A. (1)
Svanström, Stefan (1)
Andruszkiewicz, Anet ... (1)
Johansson, Malin B., ... (1)
Rueff, Jean-Pascal (1)
Hao, Yan (1)
Vijayan, Anuja (1)
Leitner, Torsten, 19 ... (1)
Céolin, Denis (1)
Foehlisch, Alexander (1)
Gardner, James M. (1)
Xu, Bo (1)
Föhlisch, Alexander (1)
visa färre...
Lärosäte
Uppsala universitet (26)
Kungliga Tekniska Högskolan (24)
Stockholms universitet (5)
Lunds universitet (1)
Havs- och vattenmyndigheten (1)
Språk
Engelska (30)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy