SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svensson Elin M) "

Sökning: WFRF:(Svensson Elin M)

  • Resultat 1-50 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
2.
  • Singh, K. P., et al. (författare)
  • Clinical standards for the management of adverse effects during treatment for TB
  • 2023
  • Ingår i: The International Journal of Tuberculosis and Lung Disease. - : International Union Against Tuberculosis and Lung Disease. - 1027-3719 .- 1815-7920. ; 27:7, s. 506-519
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Adverse effects (AE) to TB treatment cause morbidity, mortality and treatment interruption. The aim of these clinical standards is to encourage best practise for the diagnosis and management of AE.METHODS: 65/81 invited experts participated in a Delphi process using a 5-point Likert scale to score draft standards.RESULTS: We identified eight clinical standards. Each person commencing treatment for TB should: Standard 1, be counselled regarding AE before and during treatment; Standard 2, be evaluated for factors that might increase AE risk with regular review to actively identify and manage these; Standard 3, when AE occur, carefully assessed and possible allergic or hypersensitiv-ity reactions considered; Standard 4, receive appropriate care to minimise morbidity and mortality associated with AE; Standard 5, be restarted on TB drugs after a serious AE according to a standardised protocol that includes active drug safety monitoring. In addition: Standard 6, healthcare workers should be trained on AE including how to counsel people undertaking TB treatment, as well as active AE monitoring and management; Standard 7, there should be active AE monitoring and reporting for all new TB drugs and regimens; and Standard 8, knowledge gaps identified from active AE monitoring should be systematically addressed through clinical research.CONCLUSION: These standards provide a person -centred, consensus-based approach to minimise the impact of AE TB treatment.
  •  
3.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
4.
  • Alffenaar, J. W. C., et al. (författare)
  • Clinical standards for the dosing and management of TB drugs
  • 2022
  • Ingår i: The International Journal of Tuberculosis and Lung Disease. - Paris, France : International Union Against Tuberculosis and Lung Disease. - 1027-3719 .- 1815-7920. ; 26:6, s. 483-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Optimal drug dosing is important to ensure adequate response to treatment, prevent development of drug resistance and reduce drug toxicity. The aim of these clinical standards is to provide guidance on 'best practice' for dosing and management of TB drugs.Methods: A panel of 57 global experts in the fields of microbiology, pharmacology and TB care were identified; 51 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all participants.Results: Six clinical standards were defined: Standard 1, defining the most appropriate initial dose for TB treatment; Standard 2, identifying patients who may be at risk of sub-optimal drug exposure; Standard 3, identifying patients at risk of developing drug-related toxicity and how best to manage this risk; Standard 4, identifying patients who can benefit from therapeutic drug monitoring (TDM); Standard 5, highlighting education and counselling that should be provided to people initiating TB treatment; and Standard 6, providing essential education for healthcare professionals. In addition, consensus research priorities were identified.Conclusion: This is the first consensus-based Clinical Standards for the dosing and management of TB drugs to guide clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment to improve patient care.
  •  
5.
  • Dierig, A., et al. (författare)
  • A phase IIb, open-label, randomized controlled dose ranging multi-centre trial to evaluate the safety, tolerability, pharmacokinetics and exposure-response relationship of different doses of delpazolid in combination with bedaquiline delamanid moxifloxacin in adult subjects with newly diagnosed, uncomplicated, smear-positive, drug-sensitive pulmonary tuberculosis
  • 2023
  • Ingår i: Trials. - : BMC. - 1745-6215. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Linezolid is an effective, but toxic anti-tuberculosis drug that is currently recommended for the treatment of drug-resistant tuberculosis. Improved oxazolidinones should have a better safety profile, while preserving efficacy. Delpazolid is a novel oxazolidinone developed by LegoChem Biosciences Inc. that has been evaluated up to phase 2a clinical trials. Since oxazolidinone toxicity can occur late in treatment, LegoChem Biosciences Inc. and the PanACEA Consortium designed DECODE to be an innovative dose-ranging study with long-term follow-up for determining the exposure-response and exposure-toxicity relationship of delpazolid to support dose selection for later studies. Delpazolid is administered in combination with bedaquiline, delamanid and moxifloxacin.Methods: Seventy-five participants with drug-sensitive, pulmonary tuberculosis will receive bedaquiline, delamanid and moxifloxacin, and will be randomized to delpazolid dosages of 0 mg, 400 mg, 800 mg, 1200 mg once daily, or 800 mg twice daily, for 16 weeks. The primary efficacy endpoint will be the rate of decline of bacterial load on treatment, measured by MGIT liquid culture time to detection from weekly sputum cultures. The primary safety endpoint will be the proportion of oxazolidinone class toxicities; neuropathy, myelosuppression, or tyramine pressor response. Participants who convert to negative liquid media culture by week 8 will stop treatment after the end of their 16-week course and will be observed for relapse until week 52. Participants who do not convert to negative culture will receive continuation phase treatment with rifampicin and isoniazid to complete a six-month treatment course.Discussion: DECODE is an innovative dose-finding trial, designed to support exposure-response modelling for safe and effective dose selection. The trial design allows assessment of occurrence of late toxicities as observed with linezolid, which is necessary in clinical evaluation of novel oxazolidinones. The primary efficacy endpoint is the change in bacterial load, an endpoint conventionally used in shorter dose-finding trials. Long-term follow-up after shortened treatment is possible through a safety rule excluding slow-and non-responders from potentially poorly performing dosages.
  •  
6.
  • Gafar, Fajri, et al. (författare)
  • Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents : a systematic review and individual patient data meta-analysis
  • 2023
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 61:3
  • Forskningsöversikt (refereegranskat)abstract
    • Background Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level.Methods We systematically searched MEDLINE, Embase and Web of Science (1990–2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration–time curve from 0 to 24 h post-dose (AUC0–24) and peak plasma concentration (Cmax) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0–24 and Cmax were assessed with linear mixed-effects models.Results Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0–24 were summarised for isoniazid (18.7 (95% CI 15.5–22.6) h·mg·L−1), rifampicin (34.4 (95% CI 29.4–40.3) h·mg·L−1), pyrazinamide (375.0 (95% CI 339.9–413.7) h·mg·L−1) and ethambutol (8.0 (95% CI 6.4–10.0) h·mg·L−1). Our multivariate models indicated that younger age (especially <2 years) and HIV-positive status were associated with lower AUC0–24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0–24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0–24 and slow acetylators had higher isoniazid AUC0–24 than intermediate acetylators. Determinants of Cmax were generally similar to those for AUC0–24.Conclusions This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.
  •  
7.
  • Litjens, Carlijn H. C., et al. (författare)
  • Prediction of Moxifloxacin Concentrations in Tuberculosis Patient Populations by Physiologically Based Pharmacokinetic Modeling
  • 2022
  • Ingår i: Journal of clinical pharmacology. - : John Wiley & Sons. - 0091-2700 .- 1552-4604. ; 62:3, s. 385-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.
  •  
8.
  • Litjens, Carlijn H. C., et al. (författare)
  • Physiologically-Based Pharmacokinetic Modelling to Predict the Pharmacokinetics and Pharmacodynamics of Linezolid in Adults and Children with Tuberculous Meningitis
  • 2023
  • Ingår i: Antibiotics. - : MDPI. - 2079-6382. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Linezolid is used off-label for treatment of central nervous system infections. However, its pharmacokinetics and target attainment in cranial cerebrospinal fluid (CSF) in tuberculous meningitis patients is unknown. This study aimed to predict linezolid cranial CSF concentrations and assess attainment of pharmacodynamic (PD) thresholds (AUC:MIC of >119) in plasma and cranial CSF of adults and children with tuberculous meningitis. A physiologically based pharmacokinetic (PBPK) model was developed to predict linezolid cranial CSF profiles based on reported plasma concentrations. Simulated steady-state PK curves in plasma and cranial CSF after linezolid doses of 300 mg BID, 600 mg BID, and 1200 mg QD in adults resulted in geometric mean AUC:MIC ratios in plasma of 118, 281, and 262 and mean cranial CSF AUC:MIC ratios of 74, 181, and 166, respectively. In children using similar to 10 mg/kg BID linezolid, AUC:MIC values at steady-state in plasma and cranial CSF were 202 and 135, respectively. Our model predicts that 1200 mg per day in adults, either 600 mg BID or 1200 mg QD, results in reasonable (87%) target attainment in cranial CSF. Target attainment in our simulated paediatric population was moderate (56% in cranial CSF). Our PBPK model can support linezolid dose optimization efforts by simulating target attainment close to the site of TBM disease.
  •  
9.
  • Prins, H. A. B., et al. (författare)
  • Exposure and virologic outcomes of dolutegravir combined with ritonavir boosted darunavir in treatment-naive individuals enrolled in the Netherlands Cohort Study on Acute HIV infection (NOVA)
  • 2023
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier. - 0924-8579 .- 1872-7913. ; 61:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To the authors' knowledge, there is currently no literature or guidance recommendation regard-ing whether the dose of dolutegravir (DTG) should be increased when co-administered with darunavir/ritonavir (DRV/r) in patients with acute human immunodeficiency virus infection (AHI). This study assessed the pharmacokinetics (PK) of twice-daily (BID) DTG and once-daily (QD) DRV/r, and com-pared this with DTG QD without DRV/r in patients with AHI. Forty-six participants initiated antiretro-viral therapy within < 24 h of enrolment: DTG 50 mg BID, DRV/r 80 0/10 0 mg QD, and two nucleoside reverse transcriptase inhibitors (NRTIs) for 4 weeks (Phase I); and DTG 50 mg QD with two NRTIs there-after (Phase II: reference). Total DTG trough concentration (Ctrough) and area under the concentration-time profile of 0-24 h (AUC0-24h) were predicted using a population PK model. DTG glucuronidation metabolic ratio (MR) and DTG free fraction were determined and compared per treatment phase using geometric mean ratio (GMR) and 90% confidence interval (CI). Participants had a predicted geometric mean steady-state DTG Ctrough of 2.83 [coefficient of variation (CV%) 30.3%] mg/L (Phase I) and 1.28 (CV% 52.4%) mg/L (Phase II), with GMR of 2.20 (90% CI 1.90-2.55). Total exposure during DTG BID increased but did not double [AUC0-24h GMR 1.65 (90% CI 1.50-1.81) h.mg/L]. DTG glucuronidation MR increased by approxi-mately 29% during Phase I. DTG Ctrough was above in-vivo EC90 (0.32 mg/L) during both phases, except in one participant during Phase I. At Week 8, 84% of participants had viral loads <= 40 copies/mL. The drug-drug interaction between DTG (BID) and DRV/r (QD) was due to induced glucuronidation, and is not clinically relevant in patients with AHI.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
  •  
10.
  • Svensson, Elin M., 1985-, et al. (författare)
  • The Potential for Treatment Shortening With Higher Rifampicin Doses : Relating Drug Exposure to Treatment Response in Patients With Pulmonary Tuberculosis
  • 2018
  • Ingår i: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 67:1, s. 34-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Tuberculosis remains a huge public health problem and the prolonged treatment duration obstructs effective tuberculosis control. Higher rifampicin doses have been associated with better bactericidal activity, but optimal dosing is uncertain. This analysis aimed to characterize the relationship between rifampicin plasma exposure and treatment response over 6 months in a recent study investigating the potential for treatment shortening with high-dose rifampicin. Methods. Data were analyzed from 336 patients with pulmonary tuberculosis (97 with pharmacokinetic data) treated with rifampicin doses of 10, 20, or 35 mg/kg. The response measure was time to stable sputum culture conversion (TSCC). We derived individual exposure metrics with a previously developed population pharmacokinetic model of rifampicin. TSCC was modeled using a parametric time-to-event approach, and a sequential exposure-response analysis was performed. Results. Higher rifampicin exposures increased the probability of early culture conversion. No maximal limit of the effect was detected within the observed range. The expected proportion of patients with stable culture conversion on liquid medium at week 8 was predicted to increase from 39% (95% confidence interval, 37%-41%) to 55% (49%-61%), with the rifampicin area under the curve increasing from 20 to 175 mg/L.h (representative for 10 and 35 mg/kg, respectively). Other predictors of TSCC were baseline bacterial load, proportion of culture results unavailable, and substitution of ethambutol for either moxifloxacin or SQ109. Conclusions. Increasing rifampicin exposure shortened TSCC, and the effect did not plateau, indicating that doses >35 mg/kg could be yet more effective. Optimizing rifampicin dosage while preventing toxicity is a clinical priority.
  •  
11.
  • Bukkems, Vera E., et al. (författare)
  • A population pharmacokinetics analysis assessing the exposure of raltegravir once-daily 1200 mg in pregnant women living with HIV
  • 2021
  • Ingår i: CPT. - : John Wiley & Sons. - 2163-8306. ; 10:2, s. 161-172
  • Tidskriftsartikel (refereegranskat)abstract
    • Once-daily two 600 mg tablets (1200 mg q.d.) raltegravir offers an easier treatment option compared to the twice-daily regimen of one 400 mg tablet. No pharmacokinetic, efficacy, or safety data of the 1200 mg q.d. regimen have been reported in pregnant women to date as it is challenging to collect these clinical data. This study aimed to develop a population pharmacokinetic (PopPK) model to predict the pharmacokinetic profile of raltegravir 1200 mg q.d. in pregnant women and to discuss the expected pharmacodynamic properties of raltegravir 1200 mg q.d. during pregnancy based on previously reported concentration-effect relationships. Data from 11 pharmacokinetic studies were pooled (n = 221). A two-compartment model with first-order elimination and absorption through three sequential transit compartments best described the data. We assessed that the bio-availability of the 600 mg tablets was 21% higher as the 400 mg tablets, and the bio-availability in pregnant women was 49% lower. Monte-Carlo simulations were performed to predict the pharmacokinetic profile of 1200 mg q.d. in pregnant and nonpregnant women. The primary criteria for efficacy were that the lower bound of the 90% confidence interval (CI) of the concentration before next dose administration (C-trough) geometric mean ratio (GMR) of simulated pregnant/nonpregnant women had to be greater than 0.75. The simulated raltegravir C-trough GMR (90% CI) was 0.51 (0.41-0.63), hence not meeting the primary target for efficacy. Clinical data from two pregnant women using 1200 mg q.d. raltegravir showed a similar C-trough ratio pregnant/nonpregnant. Our pharmacokinetic results support the current recommendation of not using the raltegravir 1200 mg q.d. regimen during pregnancy until more data on the exposure-response relationship becomes available.
  •  
12.
  • Bukkems, V. E., et al. (författare)
  • Prediction of Maternal and Fetal Doravirine Exposure by Integrating Physiologically Based Pharmacokinetic Modeling and Human Placenta Perfusion Experiments
  • 2022
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926. ; 61:8, s. 1129-1141
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objective Doravirine is currently not recommended for pregnant women living with human immunodeficiency virus because efficacy and safety data are lacking. This study aimed to predict maternal and fetal doravirine exposure by integrating human placenta perfusion experiments with pregnancy physiologically based pharmacokinetic (PBPK) modeling.Methods Ex vivo placenta perfusions were performed in a closed-closed configuration, in both maternal-to-fetal and fetal-to-maternal directions (n = 8). To derive intrinsic placental transfer parameters from perfusion data, we developed a mechanistic placenta model. Next, we developed a maternal and fetal full-body pregnancy PBPK model for doravirine in Simcyp, which was parameterized with the derived intrinsic placental transfer parameters to predict in vivo maternal and fetal doravirine exposure at 26, 32, and 40 weeks of pregnancy. The predicted total geometric mean (GM) trough plasma concentration (C-trough) values were compared with the target (0.23 mg/L) derived from in vivo exposure-response analysis.Results A decrease of 55% in maternal doravirine area under the plasma concentration-time curve (AUC)(0-24h) was predicted in pregnant women at 40 weeks of pregnancy compared with nonpregnant women. At 26, 32, and 40 weeks of pregnancy, predicted maternal total doravirine GM C-trough values were below the predefined efficacy target of 0.23 mg/L. Perfusion experiments showed that doravirine extensively crossed the placenta, and PBPK modeling predicted considerable fetal doravirine exposure.Conclusion Substantially reduced maternal doravirine exposure was predicted during pregnancy, possibly resulting in impaired efficacy. Therapeutic drug and viral load monitoring are advised for pregnant women treated with doravirine. Considerable fetal doravirine exposure was predicted, highlighting the need for clinical fetal safety data.
  •  
13.
  • Cresswell, Fiona, V, et al. (författare)
  • High-Dose Oral and Intravenous Rifampicin for the Treatment of Tuberculous Meningitis in Predominantly Human Immunodeficiency Virus (HIV)-Positive Ugandan Adults : A Phase II Open-Label Randomized Controlled Trial
  • 2021
  • Ingår i: Clinical Infectious Diseases. - : Oxford University Press. - 1058-4838 .- 1537-6591. ; 73:5, s. 876-884
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: High-dose rifampicin may improve outcomes of tuberculous meningitis (TBM). Little safety or pharmacokinetic (PK) data exist on high-dose rifampicin in human immunodeficiency virus (HIV) coinfection, and no cerebrospinal fluid (CSF) PK data exist from Africa. We hypothesized that high-dose rifampicin would increase serum and CSF concentrations without excess toxicity. Methods: In this phase II open-label trial, Ugandan adults with suspected TBM were randomized to standard-of-care control (PO-10, rifampicin 10 mg/kg/day), intravenous rifampicin (IV-20, 20 mg/kg/day), or high-dose oral rifampicin (PO-35, 35 mg/kg/day). We performed PK sampling on days 2 and 14. The primary outcomes were total exposure (AUC(0-24)), maximum concentration (C-max), CSF concentration, and grade 3-5 adverse events. Results: We enrolled 61 adults, 92% were living with HIV, median CD4 count was 50 cells/mu L (interquartile range [IQR] 46-56). On day 2, geometric mean plasma AUC(0-24hr) was 42.9.h mg/L with standard-of-care 10 mg/kg dosing, 249.h mg/L for IV-20 and 327.h mg/L for PO-35 (P<.001). In CSF, standard of care achieved undetectable rifampicin concentration in 56% of participants and geometric mean AUC(0-24hr) 0.27 mg/L, compared with 1.74 mg/L (95% confidence interval [CI] 1.2-2.5) for IV-20 and 2.17 mg/L (1.6-2.9) for PO-35 regimens (P<.001). Achieving CSF concentrations above rifampicin minimal inhibitory concentration (MIC) occurred in 11% (2/18) of standard-of-care, 93% (14/15) of IV-20, and 95% (18/19) of PO-35 participants. Higher serum and CSF levels were sustained at day 14. Adverse events did not differ by dose (P=.34). Conclusions: Current international guidelines result in sub-therapeutic CSF rifampicin concentration for 89% of Ugandan TBM patients. High-dose intravenous and oral rifampicin were safe and respectively resulted in exposures similar to 6- and similar to 8-fold higher than standard of care, and CSF levels above the MIC.
  •  
14.
  • de Rouw, Nikki, et al. (författare)
  • Rethinking the Application of Pemetrexed for Patients with Renal Impairment : A Pharmacokinetic Analysis
  • 2021
  • Ingår i: Clinical Pharmacokinetics. - : ADIS INT LTD. - 0312-5963 .- 1179-1926. ; 60:5, s. 649-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Pemetrexed is used for the treatment for non-small cell lung cancer and mesothelioma. Patients with renal impairment are withheld treatment with this drug as it is unknown what dose is well tolerated in this population. Objective The purpose of our study was to investigate the pharmacokinetics (PK) of pemetrexed in patients with renal impairment. Methods A population PK analysis of pemetrexed was performed using non-linear mixed-effects modelling with phase I data obtained from the manufacturer. Additionally, the impact of renal function on pemetrexed PK was assessed with a simulation study using the developed PK model and a previously developed PK model lacking the phase I data. Results The dataset included 548 paired observations of 47 patients, with a wide range of estimated glomerular filtration rates (eGFR; 14.4-145.6 mL/min). Pemetrexed PK were best described by a three-compartment model with eGFR (calculated using the Chronic Kidney Disease-Epidemiology Collaboration [CKD-EPI] formula) as a linear covariate on renal pemetrexed clearance. Using the developed model, we found that renal clearance accounts for up to 84% (95% confidence interval 69-98%) of total pemetrexed clearance, whereas the manufacturer previously reported a 50% contribution of renal clearance. Conclusion Renal function is more important for the clearance of pemetrexed than previously thought and this should be taken into account in patients with renal impairment. Furthermore, a third compartment may contribute to prolonged exposure to pemetrexed during drug washout.
  •  
15.
  • Diaz, Jessica M. Aguilar, et al. (författare)
  • New and Repurposed Drugs for the Treatment of Active Tuberculosis : An Update for Clinicians
  • 2023
  • Ingår i: Respiration. - : S. Karger. - 0025-7931 .- 1423-0356. ; 102:2, s. 83-100
  • Forskningsöversikt (refereegranskat)abstract
    • Although tuberculosis (TB) is preventable and curable, the lengthy treatment (generally 6 months), poor patient adherence, high inter-individual variability in pharmacokinetics (PK), emergence of drug resistance, presence of comorbidities, and adverse drug reactions complicate TB therapy and drive the need for new drugs and/or regimens. Hence, new compounds are being developed, available drugs are repurposed, and the dosing of existing drugs is optimized, resulting in the largest drug development portfolio in TB history. This review highlights a selection of clinically available drug candidates that could be part of future TB regimens, including bedaquiline, delamanid, pretomanid, linezolid, clofazimine, optimized (high dose) rifampicin, rifapentine, and para-aminosalicylic acid. The review covers drug development history, preclinical data, PK, and current clinical development.
  •  
16.
  • Koele, Simon E., et al. (författare)
  • Early bactericidal activity studies for pulmonary tuberculosis : A systematic review of methodological aspects
  • 2023
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier. - 0924-8579 .- 1872-7913. ; 61:5
  • Forskningsöversikt (refereegranskat)abstract
    • A milestone in the development of novel antituberculosis drugs is the demonstration of early bactericidal activity (EBA) in a phase IIa clinical trial. The significant variability in measurements of bacterial load complicates data analysis in these trials.A systematic review and evaluation of methods for determination of EBA in pulmonary tuberculosis studies was undertaken. Bacterial load quantification biomarkers, reporting intervals, calculation methods, statistical testing, and handling of negative culture results were extracted. In total, 79 studies were identi-fied in which EBA was determined. Colony-forming units on solid culture media and/or time-to-positivity in liquid media were the biomarkers used most often, reported in 72 (91%) and 34 (43%) studies, respec-tively. Twenty-two different reporting intervals were presented, and 12 different calculation methods for EBA were identified. Statistical testing for a significant EBA compared with no change was performed in 54 (68%) studies, and between-group testing was performed in 32 (41%) studies. Negative culture result handling was discussed in 34 (43%) studies.Notable variation was found in the analysis methods and reporting of EBA studies. A standardized and clearly reported analysis method, accounting for different levels of variability in the data, could aid the generalization of study results and facilitate comparison between drugs/regimens.
  •  
17.
  • Litjens, Carlijn H. C., et al. (författare)
  • Protein binding of rifampicin is not saturated when using high-dose rifampicin
  • 2019
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : OXFORD UNIV PRESS. - 0305-7453 .- 1460-2091. ; 74:4, s. 986-990
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Higher doses of rifampicin are being investigated as a means to optimize response to this pivotal TB drug. It is unknown whether high-dose rifampicin results in saturation of plasma protein binding and a relative increase in protein-unbound (active) drug concentrations. Objectives To assess the free fraction of rifampicin based on an in vitro experiment and data from a clinical trial on high-dose rifampicin. Methods Protein-unbound rifampicin concentrations were measured in human serum spiked with increasing total concentrations (up to 64mg/L) of rifampicin and in samples obtained by intensive pharmacokinetic sampling of patients who used standard (10mg/kg daily) or high-dose (35mg/kg) rifampicin up to steady-state. The performance of total AUC(0-24) to predict unbound AUC(0-24) was evaluated. Results The in vitro free fraction of rifampicin remained unaltered (approximate to 9%) up to 21mg/L and increased up to 13% at 41mg/L and 17% at 64mg/L rifampicin. The highest (peak) concentration in vivo was 39.1mg/L (high-dose group). The arithmetic mean percentage unbound to total AUC(0-24)in vivo was 13.3% (range=8.1%-24.9%) and 11.1% (range=8.6%-13.6%) for the standard group and the high-dose group, respectively (P=0.214). Prediction of unbound AUC(0-24) based on total AUC(0-24) resulted in a bias of -0.05% and an imprecision of 13.2%. Conclusions Plasma protein binding of rifampicin can become saturated, but exposures after high-dose rifampicin are not high enough to increase the free fraction in TB patients with normal albumin values. Unbound rifampicin exposures can be predicted from total exposures, even in the higher dose range.
  •  
18.
  • Ruth, Mike Marvin, et al. (författare)
  • Auranofin Activity Exposes Thioredoxin Reductase as a Viable Drug Target in Mycobacterium abscessus
  • 2019
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 63:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Nontuberculous mycobacteria (NTM) are highly drug-resistant, opportunistic pathogens that can cause pulmonary disease. The outcomes of the currently recommended treatment regimens are poor, especially for Mycobacterium abscessus. New or repurposed drugs are direly needed. Auranofin, a gold-based antirheumatic agent, was investigated for Mycobacterium tuberculosis. Here, we test auranofin against NTM in vitro and ex vivo. We tested the susceptibility of 63 NTM isolates to auranofin using broth microdilution. Next, we assessed synergy between auranofin and antimycobacterial drugs using the checkerboard method and calculated the fractional inhibition concentration index (FICI). Using time-kill kinetics assays (TK), we assessed pharmacodynamics of auranofin alone and in combination with drug combinations showing the lowest FICIs for M. abscessus CIP 104536. A response surface analysis was used to assess synergistic interactions over time in TKs. Primary isolated macrophages were infected with M. abscessus and treated with auranofin. Finally, using KEGG Orthology, we looked for orthologues to auranofins drug target in M. tuberculosis. M. abscessus had the lowest auranofin MIC50 (2 mu g/ml) among the tested NTM. The lowest average FICIs were observed between auranofin and amikacin (0.45) and linezolid (0.50). Auranofin exhibited concentration-dependent killing of M. abscessus, with >1-log killing at concentrations of >2x MIC. Only amikacin was synergistic with auranofin according to Bliss independence. Auranofin could not lower the intracellular bacterial load in macrophages. Auranofin itself may not be feasible for M. abscessus treatment, but these data point toward a promising, unutilized drug target.
  •  
19.
  • Stemkens, Ralf, et al. (författare)
  • Drug interaction potential of high-dose rifampicin in patients with pulmonary tuberculosis
  • 2023
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 67:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1–15), followed by RIF40 (days 16–30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%–115%); tolbutamide, 80% (74%–86%); omeprazole, 55% (47%–65%); dextromethorphan, 77% (68%–86%); midazolam, 62% (49%–78%), and 117% (105%–130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.
  •  
20.
  • Susanto, Budi Octasari, et al. (författare)
  • Rifampicin can be given as flat-dosing instead of weight-band dosing
  • 2020
  • Ingår i: Clinical Infectious Diseases. - : Oxford University Press (OUP). - 1058-4838 .- 1537-6591. ; 71:12, s. 3055-3060
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The weight-band dosing in tuberculosis treatment regimen has been implemented in clinical practice for decades. Patients will receive different number of fixed dose combination (FDC) tablets according to their weight-band. However, some analysis have shown that weight was not the best covariate to explain variability of rifampicin exposure. Furthermore, the rationale for using weight-band dosing instead of flat-dosing becomes questionable. Therefore, this study aimed to compare the average and the variability of rifampicin exposure after weight-band dosing and flat-dosing.METHODS: Rifampicin exposure were simulated using previously published population pharmacokinetics model at dose 10-40 mg/kg for weight-band dosing and dose 600-2400 mg for flat-dosing. The median AUC0-24h after day 7 and 14 were compared as well as the variability of each dose group between weight-band and flat-dosing.RESULTS: The difference of median AUC0-24h of all dose groups between flat-dosing and weight-band dosing were considered low (< 20%) except for the lowest dose. At the dose of 10 mg/kg (600 mg for flat-dosing), flat-dosing resulted in higher median AUC0-24h compared to the weight-band dosing. A marginal decrease in between-patient variability was predicted for weight-band dosing compared to flat-dosing.CONCLUSIONS: Weight-band dosing yields a small and non-clinically relevant decrease in variability of AUC0-24h.
  •  
21.
  • Waalewijn, Hylke, et al. (författare)
  • Adequate exposure of 50 mg dolutegravir in children weighing 20 to 40 kg outside of sub-Sahara Africa
  • 2022
  • Ingår i: AIDS. - : Wolters Kluwer. - 0269-9370 .- 1473-5571. ; 36:14, s. 2077-2079
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Dolutegravir 50 mg is registered for use in children weighing 20-40 kg. This approval is based on data from an African paediatric cohort, and no pharmacokinetic data was available from children outside of Africa. This study provides further evidence of the effective use of dolutegravir 50 mg in children weighing 20 to 40 kg by showing that concentration data gathered in clinical practice shows adequate concentration levels in Dutch children without a safety signal.
  •  
22.
  • Abdelwahab, Mahmoud Tareq, et al. (författare)
  • Clofazimine pharmacokinetics in patients with TB : dosing implications
  • 2020
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : OXFORD UNIV PRESS. - 0305-7453 .- 1460-2091. ; 75:11, s. 3269-3277
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Clofazimine is in widespread use as a key component of drug-resistant TB regimens, but the recommended dose is not evidence based. Pharmacokinetic data from relevant patient populations are needed to inform dose optimization. Objectives: To determine clofazimine exposure, evaluate covariate effects on variability, and simulate exposures for different dosing strategies in South African TB patients. Patients and methods: Clinical and pharmacokinetic data were obtained from participants with pulmonary TB enrolled in two studies with intensive and sparse sampling for up to 6 months. Plasma concentrations were measured by LC-MS/MS and interpreted with non-Linear mixed-effects modelling. Body size descriptors and other potential covariates were tested on pharmacokinetic parameters. We simulated different dosing regimens to safely shorten time to average daily concentration above a putative target concentration of 0.25 mg/L. Results: We analysed 1570 clofazimine concentrations from 139 participants; 79 (57%) had drug-resistant TB and 54 (39%) were HIV infected. Clofazimine pharmacokinetics were well characterized by a three-compartment model. Clearance was 11.5 L/h and peripheral volume 10500 L for a typical participant. Lower plasma exposures were observed in women during the first few months of treatment, explained by higher body fat fraction. Model-based simulations estimated that a Loading dose of 200 mg daily for 2 weeks would achieve average daily concentrations above a target efficacy concentration 37 days earlier in a typical TB participant. Conclusions: Clofazimine was widely distributed with a Long elimination half-Life. Disposition was strongly influenced by body fat content, with potential dosing implications for women with TB.
  •  
23.
  • Abulfathi, Ahmed Aliyu, et al. (författare)
  • Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis
  • 2019
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 58:9, s. 1103-1129
  • Forskningsöversikt (refereegranskat)abstract
    • The introduction of rifampicin (rifampin) into tuberculosis (TB) treatment five decades ago was critical for shortening the treatment duration for patients with pulmonary TB to 6months when combined with pyrazinamide in the first 2months. Resistance or hypersensitivity to rifampicin effectively condemns a patient to prolonged, less effective, more toxic, and expensive regimens. Because of cost and fears of toxicity, rifampicin was introduced at an oral daily dose of 600mg (8-12mg/kg body weight). At this dose, clinical trials in 1970s found cure rates of >= 95% and relapse rates of < 5%. However, recent papers report lower cure rates that might be the consequence of increased emergence of resistance. Several lines of evidence suggest that higher rifampicin doses, if tolerated and safe, could shorten treatment duration even further. We conducted a narrative review of rifampicin pharmacokinetics and pharmacodynamics in adults across a range of doses and highlight variables that influence its pharmacokinetics/pharmacodynamics. Rifampicin exposure has considerable inter- and intra-individual variability that could be reduced by administration during fasting. Several factors including malnutrition, HIV infection, diabetes mellitus, dose size, pharmacogenetic polymorphisms, hepatic cirrhosis, and substandard medicinal products alter rifampicin exposure and/or efficacy. Renal impairment has no influence on rifampicin pharmacokinetics when dosed at 600mg. Rifampicin maximum (peak) concentration (C-max) > 8.2 mu g/mL is an independent predictor of sterilizing activity and therapeutic drug monitoring at 2, 4, and 6h post-dose may aid in optimizing dosing to achieve the recommended rifampicin concentration of >= 8 mu g/mL. A higher rifampicin C-max is required for severe forms TB such as TB meningitis, with C-max >= 22 mu g/mL and area under the concentration-time curve (AUC) from time zero to 6h (AUC(6)) >= 70 mu g.h/mL associated with reduced mortality. More studies are needed to confirm whether doses achieving exposures higher than the current standard dosage could translate into faster sputum conversion, higher cure rates, lower relapse rates, and less mortality. It is encouraging that daily rifampicin doses up to 35mg/kg were found to be safe and well-tolerated over a period of 12weeks. High-dose rifampicin should thus be considered in future studies when constructing potentially shorter regimens. The studies should be adequately powered to determine treatment outcomes and should include surrogate markers of efficacy such as C-max/MIC (minimum inhibitory concentration) and AUC/MIC.
  •  
24.
  • Brill, Margreke JE, et al. (författare)
  • Confirming model-predicted pharmacokinetic interactions between bedaquiline and lopinavir/ritonavir or nevirapine in patients with HIV and drug resistant tuberculosis
  • 2017
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier BV. - 0924-8579 .- 1872-7913. ; 49, s. 212-217
  • Tidskriftsartikel (refereegranskat)abstract
    • Bedaquiline and its metabolite M2 are metabolised by CYP3A4. The antiretrovirals ritonavir-boosted lopinavir (LPV/r) and nevirapine inhibit and induce CYP3A4, respectively. Here we aimed to quantify nevirapine and LPV/r drug–drug interaction effects on bedaquiline and M2 in patients co-infected with HIV and multidrug-resistant tuberculosis (MDR-TB) using population pharmacokinetic (PK) analysis and compare these with model-based predictions from single-dose studies in subjects without TB. An observational PK study was performed in three groups of MDR-TB patients during bedaquiline maintenance dosing: HIV-seronegative patients (n = 17); and HIV-infected patients using antiretroviral therapy including nevirapine (n = 17) or LPV/r (n = 14). Bedaquiline and M2 samples were collected over 48 h post-dose. A previously developed PK model of MDR-TB patients was used as prior information to inform parameter estimation using NONMEM. The model was able to describe bedaquiline and M2 concentrations well, with estimates close to their priors and earlier model-based interaction effects from single-dose studies. Nevirapine changed bedaquiline clearance to 82% (95% CI 67–99%) and M2 clearance to 119% (92–156%) of their original values, indicating no clinically significant interaction. LPV/r substantially reduced bedaquiline clearance to 25% (17–35%) and M2 clearance to 59% (44–69%) of original values. This work confirms earlier model-based predictions of nevirapine and LPV/r interaction effects on bedaquiline and M2 clearance from subjects without TB in single-dose studies, in MDR-TB/HIV co-infected patients studied here. To normalise bedaquiline exposure in patients with concomitant LPV/r therapy, an adjusted bedaquiline dosing regimen is proposed for further study.
  •  
25.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Targeted Delivery of Stk25 Antisense Oligonucleotides to Hepatocytes Protects Mice Against Nonalcoholic Fatty Liver Disease
  • 2019
  • Ingår i: CMGH Cellular and Molecular Gastroenterology and Hepatology. - : Elsevier BV. - 2352-345X. ; 7:3, s. 597-618
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide. Currently, no specific pharmacologic therapy is available for NAFLD/NASH, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of hepatic lipid partitioning and NAFLD/NASH. Here, we studied the metabolic benefit of liver-specific STK25 inhibitors on NAFLD development and progression in a mouse model of diet-induced obesity. Methods: We developed a hepatocyte-specific triantennary N-acetylgalactosamine (GalNAc)-conjugated antisense oligonucleotide (ASO) targeting Stk25 and evaluated its effect on NAFLD features in mice after chronic exposure to dietary lipids. Results: We found that systemic administration of hepatocyte-targeting GalNAc-Stk25 ASO in obese mice effectively ameliorated steatosis, inflammatory infiltration, hepatic stellate cell activation, nutritional fibrosis, and hepatocellular damage in the liver compared with mice treated with GalNAc-conjugated nontargeting ASO, without any systemic toxicity or local tolerability concerns. We also observed protection against high-fat-diet–induced hepatic oxidative stress and improved mitochondrial function with Stk25 ASO treatment in mice. Moreover, GalNAc-Stk25 ASO suppressed lipogenic gene expression and acetyl-CoA carboxylase protein abundance in the liver, providing insight into the molecular mechanisms underlying repression of hepatic steatosis. Conclusions: This study provides in vivo nonclinical proof-of-principle for the metabolic benefit of liver-specific inhibition of STK25 in the context of obesity and warrants future investigations to address the therapeutic potential of GalNAc-Stk25 ASO in the prevention and treatment of NAFLD.
  •  
26.
  •  
27.
  • De Jager, Veronique, et al. (författare)
  • Early Bactericidal Activity of Meropenem plus Clavulanate (with or without Rifampin) for Tuberculosis : The COMRADE Randomized, Phase 2A Clinical Trial
  • 2022
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - : American Thoracic Society. - 1073-449X .- 1535-4970. ; 205:10, s. 1228-1235
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Carbapenems are recommended for treatment of drug-resistant tuberculosis. Optimal dosing remains uncertain.Objectives: To evaluate the 14-day bactericidal activity of meropenem, at different doses, with or without rifampin.Methods: Individuals with drug-sensitive pulmonary tuberculosis were randomized to one of four intravenous meropenem-based arms: 2 g every 8 hours (TID) (arm C), 2 g TID plus rifampin at 20 mg/kg once daily (arm D), 1 g TID (arm E), or 3 g once daily (arm F). All participants received amoxicillin/clavulanate with each meropenem dose. Serial overnight sputum samples were collected from baseline and throughout treatment. Median daily fall in colony-forming unit (CFU) counts per milliliter of sputum (solid culture) (EBA(CFU0-14)) and increase in time to positive culture (TTP) in liquid media were estimated with mixed-effects modeling. Serial blood samples were collected for pharmacokinetic analysis on Day 13.Measurements and Main Results: Sixty participants enrolled. Median EBA(CFU0-14) counts (2.5th-97.5th percentiles) were 0.22 (0.12-0.33), 0.12 (0.057-0.21), 0.059 (0.033-0.097), and 0.053 (0.035-0.081); TTP increased by 0.34 (0.21-0.75), 0.11 (0.052-037), 0.094 (0.034-0.23), and 0.12 (0.04-0.41) (log(10) h), for arms C-F, respectively. Meropenem pharmacokinetics were not affected by rifampin coadministration. Twelve participants withdrew early, many of whom cited gastrointestinal adverse events.Conclusions: Bactericidal activity was greater with the World Health Organization-recommended total daily dose of 6 g daily than with a lower dose of 3 g daily. This difference was only detectable with solid culture. Tolerability of intravenous meropenem, with amoxicillin/clavulanate, though, was poor at all doses, calling into question the utility of this drug in second-line regimens.
  •  
28.
  • Denti, Paolo, et al. (författare)
  • Optimizing Dosing and Fixed-Dose Combinations of Rifampicin, Isoniazid, and Pyrazinamide in Pediatric Patients With Tuberculosis : A Prospective Population Pharmacokinetic Study
  • 2022
  • Ingår i: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 75:1, s. 141-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In 2010, the World Health Organization (WHO) revised dosing guidelines for treatment of childhood tuberculosis. Our aim was to investigate first-line antituberculosis drug exposures under these guidelines, explore dose optimization using the current dispersible fixed-dose combination (FDC) tablet of rifampicin/isoniazid/pyrazinamide; 75/50/150 mg, and suggest a new FDC with revised weight bands. Methods Children with drug-susceptible tuberculosis in Malawi and South Africa underwent pharmacokinetic sampling while receiving first-line tuberculosis drugs as single formulations according the 2010 WHO recommended doses. Nonlinear mixed-effects modeling and simulation was used to design the optimal FDC and weight-band dosing strategy for achieving the pharmacokinetic targets based on literature-derived adult AUC(0-24h) for rifampicin (38.7-72.9), isoniazid (11.6-26.3), and pyrazinamide (233-429 mg center dot h/L). Results In total, 180 children (42% female; 13.9% living with human immunodeficiency virus [HIV]; median [range] age 1.9 [0.22-12] years; weight 10.7 [3.20-28.8] kg) were administered 1, 2, 3, or 4 FDC tablets (rifampicin/isoniazid/pyrazinamide 75/50/150 mg) daily for 4-8, 8-12, 12-16, and 16-25 kg weight bands, respectively. Rifampicin exposure (for weight and age) was up to 50% lower than in adults. Increasing the tablet number resulted in adequate rifampicin but relatively high isoniazid and pyrazinamide exposures. Administering 1, 2, 3, or 4 optimized FDC tablets (rifampicin/isoniazid/pyrazinamide 120/35/130 mg) to children < 6, 6-13, 13-20. and 20-25 kg, and 0.5 tablet in < 3-month-olds with immature metabolism, improved exposures to all 3 drugs. Conclusions Current pediatric FDC doses resulted in low rifampicin exposures. Optimal dosing of all drugs cannot be achieved with the current FDCs. We propose a new FDC formulation and revised weight bands. Current pediatric dosing guidelines lead to infant rifampicin exposures much lower than in adults, whereas isoniazid and pyrazinamide exposures are similar. A new fixed-dose combination (FDC) with rifampicin/isoniazid/pyrazinamide 120/35/130 mg and weight bands of < 6, 6-13, 13-20, and 20-25 kg could improve treatment.
  •  
29.
  • Haas, David W., et al. (författare)
  • Pharmacogenetics of Between-Individual Variability in Plasma Clearance of Bedaquiline and Clofazimine in South Africa
  • 2022
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press. - 0022-1899 .- 1537-6613. ; 226:1, s. 147-156
  • Tidskriftsartikel (refereegranskat)abstract
    • In a cohort of patients treated for drug-resistant tuberculosis in South Africa, CYP3A5*3was associated with slower plasma bedaquiline clearance. Different CYP3A5*3minor allele frequencies among populations may help explain the more rapid bedaquiline clearance previously reported with African ancestry.Background Plasma bedaquiline clearance is reportedly more rapid with African ancestry. Our objective was to determine whether genetic polymorphisms explained between-individual variability in plasma clearance of bedaquiline, its M2 metabolite, and clofazimine in a cohort of patients treated for drug-resistant tuberculosis in South Africa.Methods Plasma clearance was estimated with nonlinear mixed-effects modeling. Associations between pharmacogenetic polymorphisms, genome-wide polymorphisms, and variability in clearance were examined using linear regression models.Results Of 195 cohort participants, 140 were evaluable for genetic associations. Among 21 polymorphisms selected based on prior genome-wide significant associations with any drug, rs776746 (CYP3A5*3) was associated with slower clearance of bedaquiline (P = .0017) but not M2 (P = .25). CYP3A5*3 heterozygosity and homozygosity were associated with 15% and 30% slower bedaquiline clearance, respectively. The lowest P value for clofazimine clearance was with VKORC1 rs9923231 (P = .13). In genome-wide analyses, the lowest P values for clearance of bedaquiline and clofazimine were with RFX4 rs76345012 (P = 6.4 x 10(-7)) and CNTN5 rs75285763 (P = 2.9 x 10(-8)), respectively.Conclusions Among South Africans treated for drug-resistant tuberculosis, CYP3A5*3 was associated with slower bedaquiline clearance. Different CYP3A5*3 frequencies among populations may help explain the more rapid bedaquiline clearance reported in Africans. Associations with RFX4 and CNTN5 are likely by chance alone.
  •  
30.
  • Hennig, Stefanie, et al. (författare)
  • Population pharmacokinetic drug-drug interaction pooled analysis of existing data for rifabutin and HIV PIs
  • 2016
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 71:5, s. 1330-1340
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Extensive but fragmented data from existing studies were used to describe the drug-drug interaction between rifabutin and HIV PIs and predict doses achieving recommended therapeutic exposure for rifabutin in patients with HIV-associated TB, with concurrently administered PIs.METHODS: Individual-level data from 13 published studies were pooled and a population analysis approach was used to develop a pharmacokinetic model for rifabutin, its main active metabolite 25-O-desacetyl rifabutin (des-rifabutin) and drug-drug interaction with PIs in healthy volunteers and patients who had HIV and TB (TB/HIV).RESULTS: Key parameters of rifabutin affected by drug-drug interaction in TB/HIV were clearance to routes other than des-rifabutin (reduced by 76%-100%), formation of the metabolite (increased by 224% in patients), volume of distribution (increased by 606%) and distribution to the peripheral compartment (reduced by 47%). For des-rifabutin, clearance was reduced by 35%-76% and volume of distribution increased by 67%-240% in TB/HIV. These changes resulted in overall increased exposure to rifabutin in TB/HIV patients by 210% because of the effects of PIs and 280% with ritonavir-boosted PIs.CONCLUSIONS: Given together with non-boosted or ritonavir-boosted PIs, rifabutin at 150 mg once daily results in similar or higher exposure compared with rifabutin at 300 mg once daily without concomitant PIs and may achieve peak concentrations within an acceptable therapeutic range. Although 300 mg of rifabutin every 3 days with boosted PI achieves an average equivalent exposure, intermittent doses of rifamycins are not supported by current guidelines.
  •  
31.
  • Hutchins, John, et al. (författare)
  • MRI evaluation of foraminal changes in the cervical spine with assistance of a novel compression device
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Standard supine Magnetic Resonance Imaging (MRI) does not acquire images in a position where most patients with intermittent arm radiculopathy have symptoms. The aim of this study was to test the feasibility of a new compression device and to evaluate image quality and foraminal properties during a Spurling test under MRI acquisition. Ten asymptomatic individuals were included in the study (6 men and 4 women; age range 27 to 55 years). First, the subjects were positioned in the cervical compression device in a 3 T MRI scanner, and a volume T2 weighted (T2w) sequence was acquired in a relaxed supine position (3 min). Thereafter, the position and compressive forces on the patient's neck (provocation position) were changed by maneuvering the device from the control room, with the aim to simulate a Spurling test, causing a mild foraminal compression, followed by a repeated image acquisition (3 min). A radiologist measured the blinded investigations evaluating cervical lordosis (C3-C7), foraminal area on oblique sagittal images and foraminal cross-distance in the axial plane. A total of three levels (C4-C7) were measured on the right side on each individual. Measurements were compared between the compressed and relaxed state. Reliability tests for inter- and intraclass correlation were performed. The device was feasible to use and well tolerated by all investigated individuals. Images of adequate quality was obtained in all patients. A significant increase (mean 9.4, p = 0.013) in the cervical lordosis and a decreased foraminal cross-distance (mean 32%, p < 0.001) was found, during the simulated Spurling test. The area change on oblique sagittal images did not reach a statistically significant change. The reliability tests on the quantitative measures demonstrated excellent intraobserver reliability and moderate to good interobserver reliability. Applying an individualized provocation test on the cervical spine, which simulates a Spurling test, during MRI acquisition was feasible with the novel device and provided images of satisfactory quality. MRI images acquired with and without compression showed changes in cervical lordosis and foraminal cross distance indicating the possibility of detecting changes of the foraminal properties. As a next step, the method is to be tested on symptomatic patients.
  •  
32.
  • Jacobs, Tom G., et al. (författare)
  • Pharmacokinetics of antiretroviral and tuberculosis drugs in children with HIV/TB co-infection : a systematic review
  • 2020
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 75:12, s. 3433-3457
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: Management of concomitant use of ART and TB drugs is difficult because of the many drug-drug interactions (DDIs) between the medications. This systematic review provides an overview of the current state of knowledge about the pharmacokinetics (PK) of ART and TB treatment in children with HIV/TB co-infection, and identifies knowledge gaps. Methods: We searched Embase and PubMed, and systematically searched abstract books of relevant conferences, following PRISMA guidelines. Studies not reporting PK parameters, investigating medicines that are not available any Longer or not including children with HIV/TB co-infection were excluded. ALL studies were assessed for quality. Results: In total, 47 studies met the inclusion criteria. No dose adjustments are necessary for efavirenz during concomitant first-Line TB treatment use, but intersubject PK variability was high, especially in children <3 years of age. Super-boosted Lopinavir/ritonavir (ratio 1:1) resulted in adequate Lopinavir trough concentrations during rifampicin co-administration. Double-dosed raltegravir can be given with rifampicin in children >4 weeks old as well as twice-daily dolutegravir (instead of once daily) in children older than 6 years. Exposure to some TB drugs (ethambutol and rifampicin) was reduced in the setting of HIV infection, regardless of ART use. Only Limited PK data of second-Line TB drugs with ART in children who are HIV infected have been published. Conclusions: Whereas integrase inhibitors seem favourable in older children, there are Limited options for ART in young children (<3 years) receiving rifampicin-based TB therapy. The PK of TB drugs in HIV-infected children warrants further research.
  •  
33.
  • Koele, Simon E., et al. (författare)
  • Optimized Loading Dose Strategies for Bedaquiline When Restarting Interrupted Drug-Resistant Tuberculosis Treatment
  • 2022
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 66:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Interruption of treatment is common in drug-resistant tuberculosis patients. Bedaquiline has a long terminal half-life; therefore, restarting after an interruption without a loading dose could increase the risk of suboptimal treatment outcome and resistance development. Interruption of treatment is common in drug-resistant tuberculosis patients. Bedaquiline has a long terminal half-life; therefore, restarting after an interruption without a loading dose could increase the risk of suboptimal treatment outcome and resistance development. We aimed to identify the most suitable loading dose strategies for bedaquiline restart after an interruption. A model-based simulation study was performed. Pharmacokinetic profiles of bedaquiline and its metabolite M2 (associated with QT prolongation) were simulated for 5,000 virtual patients for different durations and starting points of treatment interruption. Weekly bedaquiline area under the concentration-time curve (AUC) and M2 maximum concentration (C-max) deviation before interruption and after reloading were assessed to evaluate the efficacy and safety, respectively, of the reloading strategies. Bedaquiline weekly AUC and M2 C-max deviation were mainly driven by the duration of interruption and only marginally by the starting point of interruption. For interruptions with a duration shorter than 2 weeks, no new loading dose is needed. For interruptions with durations between 2 weeks and 1 month, 1 month and 1 year, and longer than 1 year, reloading periods of 3 days, 1 week, and 2 weeks, respectively, are recommended. This reloading strategy results in an average bedaquiline AUC deviation of 1.88% to 5.98% compared with -16.4% to -59.8% without reloading for interruptions of 2 weeks and 1 year, respectively, without increasing M2 C-max. This study presents easy-to-implement reloading strategies for restarting a patient on bedaquiline treatment after an interruption.
  •  
34.
  • Koele, Simon E, et al. (författare)
  • Power to identify exposure-response relationships in phase IIa pulmonary tuberculosis trials with multi-dimensional bacterial load modeling.
  • 2023
  • Ingår i: CPT. - 2163-8306.
  • Tidskriftsartikel (refereegranskat)abstract
    • Adequate power to identify an exposure-response relationship in a phase IIa clinical trial for pulmonary tuberculosis (TB) is important for dose selection and design of follow-up studies. Currently, it is not known what response marker provides the pharmacokinetic-pharmacodynamic (PK-PD) model more power to identify an exposure-response relationship. We simulated colony-forming units (CFU) and time-to-positivity (TTP) measurements for four hypothetical drugs with different activity profiles for 14 days. The power to identify exposure-response relationships when analyzing CFU, TTP, or combined CFU + TTP data was determined at 60 total participants, or with 25 out of 60 participants in the lowest and highest dosing groups (unbalanced design). For drugs with moderate bactericidal activity, power was low (<59%), irrespective of the data analyzed. Power was 1.9% to 29.4% higher when analyzing TTP data compared to CFU data. Combined analysis of CFU and TTP further improved the power, on average by 4.2%. For a drug with a medium-high activity, the total sample size needed to achieve 80% power was 136 for CFU, 72 for TTP, and 68 for combined CFU + TTP data. The unbalanced design improved the power by 16% over the balanced design. In conclusion, the power to identify an exposure-response relationship is low for TB drugs with moderate bactericidal activity or with a slow onset of activity. TTP provides the PK-PD model with more power to identify exposure-response relationships compared to CFU, and combined analysis or an unbalanced dosing group study design offers modest further improvement.
  •  
35.
  • Lopez-Varela, Elisa, et al. (författare)
  • Drug concentration at the site of disease in children with pulmonary tuberculosis
  • 2022
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press. - 0305-7453 .- 1460-2091. ; 77:6, s. 1710-1719
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Current TB treatment for children is not optimized to provide adequate drug levels in TB lesions. Dose optimization of first-line antituberculosis drugs to increase exposure at the site of disease could facilitate more optimal treatment and future treatment-shortening strategies across the disease spectrum in children with pulmonary TB. Objectives To determine the concentrations of first-line antituberculosis drugs at the site of disease in children with intrathoracic TB. Methods We quantified drug concentrations in tissue samples from 13 children, median age 8.6 months, with complicated forms of pulmonary TB requiring bronchoscopy or transthoracic surgical lymph node decompression in a tertiary hospital in Cape Town, South Africa. Pharmacokinetic models were used to describe drug penetration characteristics and to simulate concentration profiles for bronchoalveolar lavage, homogenized lymph nodes, and cellular and necrotic lymph node lesions. Results Isoniazid, rifampicin and pyrazinamide showed lower penetration in most lymph node areas compared with plasma, while ethambutol accumulated in tissue. None of the drugs studied was able to reach target concentration in necrotic lesions. Conclusions Despite similar penetration characteristics compared with adults, low plasma exposures in children led to low site of disease exposures for all drugs except for isoniazid.
  •  
36.
  •  
37.
  •  
38.
  • Ngwalero, Precious, et al. (författare)
  • Relationship between Plasma and Intracellular Concentrations of Bedaquiline and Its M2 Metabolite in South African Patients with Rifampin-Resistant Tuberculosis
  • 2021
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 65:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Bedaquiline is recommended for the treatment of all patients with rifampin-resistant tuberculosis (RR-TB). Bedaquiline accumulates within cells, but its intracellular pharmacokinetics have not been characterized, which may have implications for dose optimization. We developed a novel assay using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the intracellular concentrations of bedaquiline and its primary metabolite M2 in patients with RR-TB in South Africa. Twenty-one participants were enrolled and underwent sparse sampling of plasma and peripheral blood mononuclear cells (PBMCs) at months 1, 2, and 6 of treatment and at 3 and 6 months after bedaquiline treatment completion. Intensive sampling was performed at month 2. We used noncompartmental analysis to describe plasma and intracellular exposures and a population pharmacokinetic model to explore the relationship between plasma and intracellular pharmacokinetics and the effects of key covariates. Bedaquiline concentrations from month 1 to month 6 of treatment ranged from 94.7 to 2,540 ng/ml in plasma and 16.2 to 5,478 ng/ml in PBMCs, and concentrations of M2 over the 6-month treatment period ranged from 34.3 to 496 ng/ml in plasma and 109.2 to 16,764 ng/ml in PBMCs. Plasma concentrations of bedaquiline were higher than those of M2, but intracellular concentrations of M2 were considerably higher than those of bedaquiline. In the pharmacokinetic modeling, we estimated a linear increase in the intracellular-plasma accumulation ratio for bedaquiline and M2, reaching maximum effect after 2 months of treatment. The typical intracellular-plasma ratios 1 and 2 months after start of treatment were 0.61 (95% confidence interval [CI]: 0.42 to 0.92) and 1.10 (95% CI: 0.74 to 1.63) for bedaquiline and 12.4 (95% CI: 8.8 to 17.8) and 22.2 (95% CI: 15.6 to 32.3) for M2. The intracellular-plasma ratios for both bedaquiline and M2 were decreased by 54% (95% CI: 24 to 72%) in HIV-positive patients compared to HIV-negative patients. Bedaquiline and M2 were detectable in PBMCs 6 months after treatment discontinuation. M2 accumulated at higher concentrations intracellularly than bedaquiline, supporting in vitro evidence that M2 is the main inducer of phospholipidosis.
  •  
39.
  • Pieterman, E. D., et al. (författare)
  • Higher Dosing of Rifamycins Does Not Increase Activity against Mycobacterium tuberculosis in the Hollow-Fiber Infection Model
  • 2021
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 65:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Improvements in the translational value of preclinical models can allow more-successful and more-focused research on shortening the duration of tuberculosis treatment. Although the hollow-fiber infection model (HFIM) is considered a valuable addition to the drug development pipeline, its exact role has not been fully determined yet. Since the strategy of increasing the dose of rifamycins is being evaluated for its treatment-shortening potential, additional in vitro modeling is important. Therefore, we assessed increased dosing of rifampin and rifapentine in our HFIM in order to gain more insight into the place of the HFIM in the drug development pipeline. Total and free-fraction concentrations corresponding to daily dosing of 2.7, 10, and 50 mg of rifampin/kg of body weight, as well as 600 mg and 1,500 mg rifapentine, were assessed in our HFIM using the Mycobacterium tuberculosis H37Rv strain. Drug activity and the emergence of drug resistance were assessed by CFU counting and subsequent mathematical modeling over 14 days, and pharmacokinetic exposures were checked. We found that increasing rifampin exposure above what is expected with the standard dose did not result in higher antimycobacterial activity. For rifapentine, only the highest concentration showed increased activity, but the clinical relevance of this observation is questionable. Moreover, for both drugs, the emergence of resistance was unrelated to exposure. In conclusion, in the simplest experimental setup, the results of the HFIM did not fully correspond to preexisting clinical data. The inclusion of additional parameters and readouts in this preclinical model could be of interest for proper assessment of the translational value of the HFIM.
  •  
40.
  • Radtke, Kendra K., et al. (författare)
  • Emerging data on rifampicin pharmacokinetics and approaches to optimal dosing in children with tuberculosis
  • 2022
  • Ingår i: Expert Review of Clinical Pharmacology. - : Informa UK Limited. - 1751-2433 .- 1751-2441. ; 15:2, s. 161-174
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction Despite its longstanding role in tuberculosis (TB) treatment, there continues to be emerging rifampicin research that has important implications for pediatric TB treatment and outstanding questions about its pharmacokinetics and optimal dose in children. Areas covered This review aims to summarize and discuss emerging data on the use of rifampicin for: 1) routine treatment of drug-susceptible TB; 2) special subpopulations such as children with malnutrition, HIV, or TB meningitis; 3) treatment shortening. We also highlight the implications of these new data for child-friendly rifampicin formulations and identify future research priorities. Expert opinion New data consistently show low rifampicin exposures across all pediatric populations with 10-20 mg/kg dosing. Although clinical outcomes in children are generally good, rifampicin dose optimization is needed, especially given a continued push to shorten treatment durations and for specific high-risk populations of children who have worse outcomes. A pooled analysis of existing data using applied pharmacometrics would answer many of the important questions remaining about rifampicin pharmacokinetics needed to optimize doses, especially in special populations. Targeted clinical studies in children with TB meningitis and treatment shortening with high-dose rifampicin are also priorities.
  •  
41.
  • Roslund, Mattias U., et al. (författare)
  • Complete 1H and 13C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program CASPER
  • 2011
  • Ingår i: Carbohydrate Research. - : Elsevier BV. - 0008-6215 .- 1873-426X. ; 346:11, s. 1311-1319
  • Tidskriftsartikel (refereegranskat)abstract
    • The computer program casper uses 1H and 13C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the 1H and 13C, as well as 31P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 1H and 13C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D 1H,13C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t1 incremented 1H,13C-HSQC experiment and a 1D 1H,1H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3 Hz apart. The 1H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental 1H and 13C NMR chemical shifts.
  •  
42.
  • Ruth, Mike Marvin, et al. (författare)
  • A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria
  • 2019
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : OXFORD UNIV PRESS. - 0305-7453 .- 1460-2091. ; 74:4, s. 935-943
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Non-tuberculous mycobacteria (NTM) infections are hard to treat. New antimicrobial drugs and smarter combination regimens are needed.Objectives: Our aim was to determine the in vitro activity of bedaquiline against NTM and assess its synergy with established antimycobacterials.Methods: We determined MICs of bedaquiline for clinically relevant NTM species and Mycobacterium tuberculosis by broth microdilution for 30 isolates. Synergy testing was performed using the chequerboard method for 22 reference strains and clinical isolates of Mycobacterium abscessus (MAB) and Mycobacterium avium complex (MAC). Time-kill kinetics (TK) assays with resistance monitoring of bedaquiline alone and combined with clofazimine were performed for MAB CIP 104536 and M. avium ATCC 700898; bedaquiline/clarithromycin combinations were evaluated against M. avium ATCC 700898. Interactions were assessed for TK experiments based on Bliss independence.Results: Bedaquiline had modest activity against tested NTM, with MICs between <0.007and 1mg/L. Bedaquiline showed no interaction with tested drugs against MAB or MAC. Lowest mean fractional inhibitory concentration index (FICI) values were 0.79 with clofazimine for MAB and 0.97 with clofazimine and 0.82 with clarithromycin for MAC. In TK assays, bedaquiline showed a bacteriostatic effect. Clofazimine extended the bacteriostatic activity of bedaquiline against MAB and yielded a slight bactericidal effect against M. avium. The bedaquiline/clofazimine combination slowed emergence of bedaquiline resistance for M. avium but promoted it for MAB. Relative to Bliss independence, bedaquiline/clofazimine showed synergistic interaction over time for MAB and no interaction for M. avium and bedaquiline/clarithromycin showed antagonistic interaction for M. avium.Conclusions: Following these in vitro data, a bedaquiline/clofazimine combination might add activity to MAB and MAC treatment. The bedaquiline/clarithromycin combination might have lower activity compared with bedaquiline alone for MAC treatment.
  •  
43.
  • Ruth, Mike Marvin, et al. (författare)
  • Is there a role for tedizolid in the treatment of non-tuberculous mycobacterial disease?
  • 2020
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : OXFORD UNIV PRESS. - 0305-7453 .- 1460-2091. ; 75:3, s. 609-617
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Pulmonary infections caused by non-tuberculous mycobacteria (NTM) are hard to treat and have low cure rates despite intensive multidrug therapy.Objectives: To assess the feasibility of tedizolid, a new oxazolidinone, for the treatment of Mycobacterium avium and Mycobacterium abscessus.Methods: We determined MICs of tedizolid for 113 isolates of NTM. Synergy with key antimycobacterial drugs was assessed using the chequerboard method and calculation of the FIC index (FICI). We performed time-kill kinetics assays of tedizolid alone and combined with amikacin for M. abscessus and with ethambutol for M. avium. Human macrophages were infected with M. abscessus and M. avium and subsequently treated with tedizolid; intracellular and extracellular cfu were quantified over time.Results: NTM isolates generally had a lower MIC of tedizolid than of linezolid. FICIs were lowest between tedizolid and amikacin for M. abscessus (FICI = 0.75) and between tedizolid and ethambutol for M. avium (FICI = 0.72). Clarithromycin and tedizolid showed initial synergy, which was abrogated by erm(41)-induced macrolide resistance (FICI = 0.53). Tedizolid had a weak bacteriostatic effect on M. abscessus and combination with amikacin slightly prolonged its effect. Tedizolid had concentration-dependent activity against M. avium and its efficacy was enhanced by ethambutol. Both combinations had a concentration-dependent synergistic effect. Tedizolid could inhibit the intracellular bacterial population of both M. avium and M. abscessus.Conclusions: Tedizolid should be further investigated in pharmacodynamic studies and clinical trials for M. avium complex pulmonary disease. It is less active against M. abscessus, but still promising.
  •  
44.
  • Sonawane, Vidhisha V., et al. (författare)
  • An In Vitro Perspective on What Individual Antimicrobials Add to Mycobacterium avium Complex Therapies
  • 2021
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 65:8
  • Tidskriftsartikel (refereegranskat)abstract
    • For Mycobacterium avium complex pulmonary disease (MAC-PD), current treatment regimens yield low cure rates. To obtain an evidence-based combination therapy, we assessed the in vitro activity of six drugs, namely, clarithromycin (CLR), rifampin (RIF), ethambutol (EMB), amikacin (AMK), clofazimine (CLO), and minocycline (MIN), alone and in combination, against Mycobacterium avium and studied the contributions of individual antibiotics to efficacy. The MICs of all antibiotics against M. avium ATCC 700898 were determined by broth microdilution. We performed kinetic time-kill assays of all single drugs and clinically relevant two-, three-, four-, and five-drug combinations against M. avium. Pharmacodynamic interactions of these combinations were assessed using area under the time-kill curve-derived effect size and Bliss independence. Adding a second drug yielded an average increase of the effect size (E) of 18.7% +/- 32.9%, although antagonism was seen in some combinations. Adding a third drug showed a smaller increase in effect size (112.2% +/- 11.5%). The RIF-CLO-CLR (E of 102 log(10) CFU/ml . day), RIF-AMK-CLR (E of 101 log(10) CFU/ml . day), and AMK-MIN-EMB (E of 97.8 log(10) CFU/ml . day) regimens proved more active than the recommended RIF-EMB-CLR regimen (E of 89.1 log(10) CFU/ml . day). The addition of a fourth drug had little impact on effect size (+14.54% +/- 3.08%). In vitro, several two- and three-drug regimens are as effective as the currently recommended regimen for MAC-PD. Adding a fourth drug to any regimen had little additional effect. In vitro, the most promising regimen would be RIF-AMK-macrolide or RIF-CLO-macrolide.
  •  
45.
  • Susanto, Budi O., et al. (författare)
  • Model-based analysis of bactericidal activity and a new dosing strategy for optimised-dose rifampicin
  • 2023
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier. - 0924-8579 .- 1872-7913. ; 61:6
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundHigher doses of rifampicin for tuberculosis have been shown to improve early bactericidal activity (EBA) and at the same time increase the intolerability due to high exposure at the beginning of treatment. To support dose optimisation of rifampicin, this study investigated new and innovative staggered dosing of rifampicin using clinical trial simulations to minimise tolerability problems and still achieve good efficacy.MethodsRifampicin population pharmacokinetics and time-to-positivity models were applied to data from patients receiving 14 days of daily 10–50 mg/kg rifampicin to characterise the exposure-response relationship. Furthermore, clinical trial simulations of rifampicin exposure were performed following four different staggered dosing scenarios. The simulated exposure after 35 mg/kg was used as a relative comparison for efficacy. Tolerability was derived from a previous model-based analysis relating exposure at day 7 and the probability of having adverse events.ResultsThe linear relationship between rifampicin exposure and bacterial killing rate in sputum indicated that the maximum rifampicin EBA was not reached at doses up to 50 mg/kg. Clinical trial simulations of a staggered dosing strategy starting the treatment at a lower dose (20 mg/kg) for 7 days followed by a higher dose (40 mg/kg) predicted a lower initial exposure with lower probability of tolerability problems and better EBA compared with a regimen of 35 mg/kg daily.ConclusionsStaggered dosing of 20 mg/kg for 7 days followed by 40 mg/kg is predicted to reduce tolerability while maintaining exposure levels associated with better efficacy.
  •  
46.
  •  
47.
  • Svensson, Elin M., et al. (författare)
  • Impact of Lopinavir-Ritonavir or Nevirapine on Bedaquiline Exposures and Potential Implications for Patients with Tuberculosis-HIV Coinfection
  • 2014
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 58:11, s. 6406-6412
  • Tidskriftsartikel (refereegranskat)abstract
    • Concomitant treatment of tuberculosis (TB) and HIV is recommended and improves outcomes. Bedaquiline is a novel drug for the treatment of multidrug-resistant (MDR) TB; combined use with antiretroviral drugs, nevirapine, or ritonavir-boosted lopinavir (LPV/r) is anticipated, but no clinical data from coinfected patients are available. Plasma concentrations of bedaquiline and its M2 metabolite after single doses were obtained from interaction studies with nevirapine or LPV/r in healthy volunteers. The antiretrovirals' effects on bedaquiline and M2 pharmacokinetics were assessed by nonlinear mixed-effects modeling. Potential dose adjustments were evaluated with simulations. No significant effects of nevirapine on bedaquiline pharmacokinetics were identified. LPV/r decreased bedaquiline and M2 clearances to 35% (relative standard error [RSE], 9.2%) and 58% (RSE, 8.4%), respectively, of those without comedication. As almost 3-fold (bedaquiline) and 2-fold (M2) increases in exposures during chronic treatment with LPV/r are expected, dose adjustments are suggested for evaluation. Efficacious, safe bedaquiline dosing for MDR-TB patients receiving antiretrovirals is important. Modeling results suggest that bedaquiline can be coadministered with nevirapine without dose adjustments. The predicted elevation of bedaquiline and M2 levels during LPV/r coadministration may be a safety concern, and careful monitoring is recommended. Further data are being collected in coinfected patients to determine whether dose adjustments are needed.
  •  
48.
  • Svensson, Elin M., et al. (författare)
  • Model-Based Estimates of the Effects of Efavirenz on Bedaquiline Pharmacokinetics and Suggested Dose Adjustments for Patients Coinfected with HIV and Tuberculosis
  • 2013
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 57:6, s. 2780-2787
  • Tidskriftsartikel (refereegranskat)abstract
    • Safe, effective concomitant treatment regimens for tuberculosis (TB) and HIV infection are urgently needed. Bedaquiline (BDQ) is a promising new anti-TB drug, and efavirenz (EFV) is a commonly used antiretroviral. Due to EFV's induction of cytochrome P450 3A4, the metabolic enzyme responsible for BDQ biotransformation, the drugs are expected to interact. Based on data from a phase I, single-dose pharmacokinetic study, a nonlinear mixed-effects model characterizing BDQ pharmacokinetics and interaction with multiple-dose EFV was developed. BDQ pharmacokinetics were best described by a 3-compartment disposition model with absorption through a dynamic transit compartment model. Metabolites M2 and M3 were described by 2-compartment models with clearance of BDQ and M2, respectively, as input. Impact of induction was described as an instantaneous change in clearance 1 week after initialization of EFV treatment and estimated for all compounds. The model predicts average steady-state concentrations of BDQ and M2 to be reduced by 52% (relative standard error [RSE], 3.7%) with chronic coadministration. A range of models with alternative structural assumptions regarding onset of induction effect and fraction metabolized resulted in similar estimates of the typical reduction and did not offer a markedly better fit to data. Simulations to investigate alternative regimens mitigating the estimated interaction effect were performed. The results suggest that simple adjustments of the standard regimen during EFV coadministration can prevent reduced exposure to BDQ without increasing exposures to M2. However, exposure to M3 would increase. Evaluation in clinical trials of adjusted regimens is necessary to ensure appropriate dosing for HIV-infected TB patients on an EFV-based regimen.
  •  
49.
  • Svensson, Elin M., 1985-, et al. (författare)
  • Model-based meta-analysis of rifampicin exposure and mortality in Indonesian tuberculous meningitis trials
  • 2020
  • Ingår i: Clinical Infectious Diseases. - : Oxford University Press (OUP). - 1058-4838 .- 1537-6591. ; 71:8, s. 1817-1823
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIntensified antimicrobial treatment with higher rifampicin doses may improve outcome of tuberculous meningitis, but the desirable exposure and necessary dose are unknown. Our objective was to characterize the relationship between rifampicin exposures and mortality in order to identify optimal dosing for tuberculous meningitis.MethodsAn individual patient meta-analysis was performed on data from 3 Indonesian randomized controlled phase 2 trials comparing oral rifampicin 450 mg (~10 mg/kg) to intensified regimens including 750–1350 mg orally, or a 600-mg intravenous infusion. Pharmacokinetic data from plasma and cerebrospinal fluid (CSF) were analyzed with nonlinear mixed-effects modeling. Six-month survival was described with parametric time-to-event models.ResultsPharmacokinetic analyses included 133 individuals (1150 concentration measurements, 170 from CSF). The final model featured 2 disposition compartments, saturable clearance, and autoinduction. Rifampicin CSF concentrations were described by a partition coefficient (5.5%; 95% confidence interval [CI], 4.5%–6.4%) and half-life for distribution plasma to CSF (2.1 hours; 95% CI, 1.3–2.9 hours). Higher CSF protein concentration increased the partition coefficient. Survival of 148 individuals (58 died, 15 dropouts) was well described by an exponentially declining hazard, with lower age, higher baseline Glasgow Coma Scale score, and higher individual rifampicin plasma exposure reducing the hazard. Simulations predicted an increase in 6-month survival from approximately 50% to approximately 70% upon increasing the oral rifampicin dose from 10 to 30 mg/kg, and predicted that even higher doses would further improve survival.ConclusionsHigher rifampicin exposure substantially decreased the risk of death, and the maximal effect was not reached within the studied range. We suggest a rifampicin dose of at least 30 mg/kg to be investigated in phase 3 clinical trials.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 65
Typ av publikation
tidskriftsartikel (55)
forskningsöversikt (6)
annan publikation (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (57)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Svensson, Elin, 1985 ... (32)
Svensson, Elin M., 1 ... (15)
Karlsson, Mats O. (11)
Maartens, Gary (9)
Diacon, Andreas H. (9)
Dooley, Kelly E. (9)
visa fler...
Denti, Paolo (6)
Brust, James C. M. (5)
Dawson, Rodney (5)
Wiesner, Lubbe (5)
Wertheim, Heiman F. ... (5)
Wasserman, Sean (4)
Gandhi, Neel R. (4)
Meintjes, Graeme (4)
Karlsson, Mats (3)
Abulfathi, Ahmed A. (3)
de Jager, Veronique (3)
Kim, H. Y. (2)
Khaw, Kay-Tee (2)
Karlsson, Magnus (2)
Abdelwahab, Mahmoud ... (2)
Diacon, Andreas (2)
Vandenput, Liesbeth, ... (2)
Singla, R (2)
Decloedt, Eric H. (2)
Reuter, Helmuth (2)
LaCroix, Andrea Z. (2)
Ohlsson, Claes, 1965 (2)
Kwan, Tony (2)
Pastinen, Tomi (2)
Hallmans, Göran (2)
Center, Jacqueline R (2)
Eisman, John A (2)
Nguyen, Tuan V (2)
Eriksson, Joel (2)
Centis, R (2)
Dheda, K (2)
Tiberi, S (2)
Ridker, Paul M. (2)
Chasman, Daniel I. (2)
Amin, Najaf (2)
van Duijn, Cornelia ... (2)
Rose, Lynda M (2)
Thorleifsson, Gudmar (2)
Thorsteinsdottir, Un ... (2)
Stefansson, Kari (2)
Aleksa, A (2)
Skrahina, A (2)
Tadolini, M (2)
Srivastava, S. (2)
visa färre...
Lärosäte
Uppsala universitet (59)
Göteborgs universitet (4)
Lunds universitet (3)
Karolinska Institutet (3)
Umeå universitet (2)
Chalmers tekniska högskola (2)
visa fler...
Stockholms universitet (1)
Linköpings universitet (1)
Linnéuniversitetet (1)
RISE (1)
visa färre...
Språk
Engelska (65)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (57)
Naturvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy