SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swanberg Maria) "

Sökning: WFRF:(Swanberg Maria)

  • Resultat 1-32 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  •  
3.
  • Belfiori, Lautaro Francisco, et al. (författare)
  • Nigral transcriptomic profiles in Engrailed-1 hemizygous mouse models of Parkinson's disease reveal upregulation of oxidative phosphorylation-related genes associated with delayed dopaminergic neurodegeneration
  • 2024
  • Ingår i: Frontiers in Aging Neuroscience. - 1663-4365. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Parkinson's disease (PD) is the second most common neurodegenerative disorder, increasing both in terms of prevalence and incidence. To date, only symptomatic treatment is available, highlighting the need to increase knowledge on disease etiology in order to develop new therapeutic strategies. Hemizygosity for the gene Engrailed-1 ( En1), encoding a conserved transcription factor essential for the programming, survival, and maintenance of midbrain dopaminergic neurons, leads to progressive nigrostriatal degeneration, motor impairment and depressive-like behavior in SwissOF1 (OF1 -En1 +/-). The neurodegenerative phenotype is, however, absent in C57Bl/6j (C57 -En1 +/-) mice. En1 +/- mice are thus highly relevant tools to identify genetic factors underlying PD susceptibility. METHODS: Transcriptome profiles were defined by RNAseq in microdissected substantia nigra from 1-week old OF1, OF1- En1 +/-, C57 and C57- En1 +/- male mice. Differentially expressed genes (DEGs) were analyzed for functional enrichment. Neurodegeneration was assessed in 4- and 16-week old mice by histology. RESULTS: Nigrostriatal neurodegeneration was manifested in OF1- En1 +/- mice by increased dopaminergic striatal axonal swellings from 4 to 16 weeks and decreased number of dopaminergic neurons in the SNpc at 16 weeks compared to OF1. In contrast, C57- En1 +/- mice had no significant increase in axonal swellings or cell loss in SNpc at 16 weeks. Transcriptomic analyses identified 198 DEGs between OF1- En1 +/- and OF1 mice but only 52 DEGs between C57- En1 +/- and C57 mice. Enrichment analysis of DEGs revealed that the neuroprotective phenotype of C57- En1 +/- mice was associated with a higher expression of oxidative phosphorylation-related genes compared to both C57 and OF1- En1 +/- mice. DISCUSSION: Our results suggest that increased expression of genes encoding mitochondrial proteins before the onset of neurodegeneration is associated with increased resistance to PD-like nigrostriatal neurodegeneration. This highlights the importance of genetic background in PD models, how different strains can be used to model clinical and sub-clinical pathologies and provides insights to gene expression mechanisms associated with PD susceptibility and progression.
  •  
4.
  • Boza-Serrano, Antonio, et al. (författare)
  • Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease
  • 2019
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 138:2, s. 251-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a progressive neurodegenerative disease in which the formation of extracellular aggregates of amyloid beta (Aβ) peptide, fibrillary tangles of intraneuronal tau and microglial activation are major pathological hallmarks. One of the key molecules involved in microglial activation is galectin-3 (gal3), and we demonstrate here for the first time a key role of gal3 in AD pathology. Gal3 was highly upregulated in the brains of AD patients and 5xFAD (familial Alzheimer’s disease) mice and found specifically expressed in microglia associated with Aβ plaques. Single-nucleotide polymorphisms in the LGALS3 gene, which encodes gal3, were associated with an increased risk of AD. Gal3 deletion in 5xFAD mice attenuated microglia-associated immune responses, particularly those associated with TLR and TREM2/DAP12 signaling. In vitro data revealed that gal3 was required to fully activate microglia in response to fibrillar Aβ. Gal3 deletion decreased the Aβ burden in 5xFAD mice and improved cognitive behavior. Interestingly, a single intrahippocampal injection of gal3 along with Aβ monomers in WT mice was sufficient to induce the formation of long-lasting (2 months) insoluble Aβ aggregates, which were absent when gal3 was lacking. High-resolution microscopy (stochastic optical reconstruction microscopy) demonstrated close colocalization of gal3 and TREM2 in microglial processes, and a direct interaction was shown by a fluorescence anisotropy assay involving the gal3 carbohydrate recognition domain. Furthermore, gal3 was shown to stimulate TREM2–DAP12 signaling in a reporter cell line. Overall, our data support the view that gal3 inhibition may be a potential pharmacological approach to counteract AD.
  •  
5.
  • Jensen, Vivi Fh, et al. (författare)
  • Differential expression of the inflammatory ciita gene may be accompanied by altered bone properties in intact sex steroid-deficient female rats
  • 2023
  • Ingår i: BMC Research Notes. - 1756-0500. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The class II transactivator (CIITA), encoded by the CIITA gene, controls expression of immune response regulators, which affect bone homeostasis. Previously, we investigated a functional CIITA polymorphism in elderly women. Women carrying the allele associated with lower CIITA levels displayed higher bone mineral density (BMD), but also higher bone loss. The present exploratory study in a rat model sought to investigate effects of differential expression of Ciita on bone structural integrity and strength. Two strains DA (normal-to-high expression) and DA.VRA4 (lower expression) underwent ovariectomy (OVX) or sham-surgery at ~ 14-weeks of age (DA OVX n = 8, sham n = 4; DA.VRA4 OVX n = 10, sham n = 2). After 16-weeks, femoral BMD and bone mineral content (BMC) were measured and morphometry and biomechanical testing performed. Results: In DA.VRA4 rats, BMD/BMC, cross-sectional area and biomechanical properties were lower. Ciita expression was accompanied by OVX-induced changes to cross-sectional area and femoral shaft strength; DA rats had lower maximum load-to-fracture. Thus, while lower Ciita expression associated with lower bone mass, OVX induced changes to structural and mechanical bone properties were less pronounced. Conclusion: The data tentatively suggests association between Ciita expression and structural and mechanical bone properties, and a possible role in bone changes resulting from estrogen deficiency.
  •  
6.
  • Periñán, Maria Teresa, et al. (författare)
  • Effect Modification between Genes and Environment and Parkinson's Disease Risk
  • 2022
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 92:5, s. 715-724
  • Forskningsöversikt (refereegranskat)abstract
    • Parkinson's disease (PD) is a complex neurodegenerative condition in which genetic and environmental factors interact to contribute to its etiology. Remarkable progress has been made in deciphering disease etiology through genetic approaches, but there is limited data about how environmental and genetic factors interact to modify penetrance, risk, and disease severity. Here, we provide insights into environmental modifiers of PD, discussing precedents from other neurological and non-neurological conditions. Based on these examples, we outline genetic and environmental factors contributing to PD and review potential environmental modifiers of penetrance and clinical variability in monogenic and idiopathic PD. We also highlight the potential challenges and propose how future studies might tackle these important questions. ANN NEUROL 2022.
  •  
7.
  •  
8.
  • Bachiller, Sara, et al. (författare)
  • Microglia in neurological diseases : A road map to brain-disease dependent-inflammatory response
  • 2018
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Microglia represent a specialized population of macrophages-like cells in the central nervous system (CNS) considered immune sentinels that are capable of orchestrating a potent inflammatory response. Microglia are also involved in synaptic organization, trophic neuronal support during development, phagocytosis of apoptotic cells in the developing brain, myelin turnover, control of neuronal excitability, phagocytic debris removal as well as brain protection and repair. Microglial response is pathology dependent and affects to immune, metabolic. In this review, we will shed light on microglial activation depending on the disease context and the influence of factors such as aging, environment or cell-to-cell interaction.
  •  
9.
  • Brolin, Kajsa, et al. (författare)
  • Insights on Genetic and Environmental Factors in Parkinson's Disease from a Regional Swedish Case-Control Cohort
  • 2022
  • Ingår i: Journal of Parkinson's Disease. - 1877-718X. ; 12:1, s. 153-171
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Risk factors for Parkinson's disease (PD) can be more or less relevant to a population due to population-specific genetic architecture, local lifestyle habits, and environmental exposures. Therefore, it is essential to study PD at a local, regional, and continental scale in order to increase the knowledge on disease etiology.OBJECTIVE: We aimed to investigate the contribution of genetic and environmental factors to PD in a new Swedish case-control cohort.METHODS: PD patients (n = 929) and matched population-based controls (n = 935) from the southernmost county in Sweden were included in the cohort. Information on environmental exposures was obtained using questionnaires at inclusion. Genetic analyses included a genome-wide association study (GWAS), haplotype assessment, and a risk profile analysis using cumulative genetic risk scores.RESULTS: The cohort is a representative PD case-control cohort (64% men, mean age at diagnosis = 67 years, median Hoehn and Yahr score 2.0), in which previously reported associations between PD and environmental factors, such as tobacco, could be confirmed. We describe the first GWAS of PD solely composed of PD patients from Sweden, and confirm associations to well-established risk alleles in SNCA. In addition, we nominate an unconfirmed and potentially population-specific genome-wide significant association in the PLPP4 locus (rs12771445).CONCLUSION: This work provides an in-depth description of a new PD case-control cohort from southern Sweden, giving insights into environmental and genetic risk factors for PD in the Swedish population.
  •  
10.
  • Brolin, Kajsa, et al. (författare)
  • RIC3 variants are not associated with Parkinson's disease in large European, Latin American, or East Asian cohorts
  • 2022
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 109, s. 264-268
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is a complex neurodegenerative disorder in which both rare and common genetic variants contribute to disease risk. Multiple genes have been reported to be linked to monogenic PD but these only explain a fraction of the observed familial aggregation. Rare variants in RIC3 have been suggested to be associated with PD in the Indian population. However, replication studies yielded inconsistent results. We further investigate the role of RIC3 variants in PD in European cohorts using individual-level genotyping data from 14,671 PD patients and 17,667 controls, as well as whole-genome sequencing data from 1,615 patients and 961 controls. We also investigated RIC3 using summary statistics from a Latin American cohort of 1,481 individuals, and from a cohort of 31,575 individuals of East Asian ancestry. We did not identify any association between RIC3 and PD in any of the cohorts. However, more studies of rare variants in non-European ancestry populations, in particular South Asian populations, are necessary to further evaluate the world-wide role of RIC3 in PD etiology.
  •  
11.
  • Diez, Margarita, et al. (författare)
  • Identification of gene regions regulating inflammatory microglial response in the rat CNS after nerve injury
  • 2009
  • Ingår i: Journal of Neuroimmunology. - : Elsevier BV. - 1872-8421 .- 0165-5728. ; 212:1-2, s. 82-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Local CNS inflammation takes place in many neurological disorders and is important for autoimmune neuroinflammation. Microglial activation is strain-dependent in rats and differential MHC class II expression is influenced by variations in the Mhc2ta gene. Despite sharing Mhc2ta and MHC class II alleles, BN and LEW.1N rats differ in MHC class II expression after ventral root avulsion (VRA). We studied MHC class II expression and glial activation markers in BN rats after VRA. Our results demonstrate that MHC class II expression originates from a subpopulation of IBA1(+), ED1(-), and ED2(-) microglia. We subsequently performed a genome-wide linkage scan in an F2(BNxLEW.1N) population, to investigate gene regions regulating this inflammatory response. Alongside MHC class II, we studied the expression of MHC class 1, costimulatory molecules, complement components, microglial markers and Il1b. MHC class II and other transcripts were commonly regulated by gene regions on chromosomes 1 and 7. Furthermore, a common region on chromosome 10 regulated expression of complement and co-stimulatory molecules, while a region on chromosome II regulated MHC class I. We also detected epistatic interactions in the regulation of the inflammatory process. These results reveal the complex regulation of CNS inflammation by several gene regions, which may have relevance for disease. (C) 2009 Elsevier B.V. All rights reserved.
  •  
12.
  • Gyllenberg, A, et al. (författare)
  • Age-dependent variation of genotypes in MHC II transactivator gene (CIITA) in controls and association to type 1 diabetes
  • 2012
  • Ingår i: Genes and Immunity. - Stockholm : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; 76:2, s. 202-203
  • Tidskriftsartikel (refereegranskat)abstract
    • The major histocompatibility complex class II transactivator (CIITA) gene (16p13) has been reported to associate with susceptibility to multiple sclerosis, rheumatoid arthritis and myocardial infarction, recently also to celiac disease at genome-wide level. However, attempts to replicate association have been inconclusive. Previously, we have observed linkage to the CIITA region in Scandinavian type 1 diabetes (T1D) families. Here we analyze five Swedish T1D cohorts and a combined control material from previous studies of CIITA. We investigate how the genotype distribution within the CIITA gene varies depending on age, and the association to T1D. Unexpectedly, we find a significant difference in the genotype distribution for markers in CIITA (rs11074932, P=4 × 10(-5) and rs3087456, P=0.05) with respect to age, in the collected control material. This observation is replicated in an independent cohort material of about 2000 individuals (P=0.006, P=0.007). We also detect association to T1D for both markers, rs11074932 (P=0.004) and rs3087456 (P=0.001), after adjusting for age at sampling. The association remains independent of the adjacent T1D risk gene CLEC16A. Our results indicate an age-dependent variation in CIITA allele frequencies, a finding of relevance for the contrasting outcomes of previously published association studies.
  •  
13.
  •  
14.
  • Harnesk, Karin, et al. (författare)
  • Differential nerve injury-induced expression of MHC class II in the mouse correlates to genetic variability in the type I promoter of C2ta
  • 2009
  • Ingår i: Journal of Neuroimmunology. - : Elsevier BV. - 1872-8421 .- 0165-5728. ; 212:1-2, s. 44-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Major histocompatibility complex (MHC) class II is of critical importance for the induction of immune responses. Levels of MHC class II in the nervous system are normally low, but expression is up-regulated in many disease conditions. In rat and human, variation in the MHC class II transactivator gene (Uta) is associated with differential expression of MHC class II and susceptibility to autoimmune disease. Here we have characterized the response to facial nerve transection in 7 inbred mouse strains (C57BL/6J, DBA/2J, 129X1/SvJ, BALB/cJ, SJL/J, CBA/J, and NOD). The results demonstrate differences in expression of C2ta and markers for MHC class I and II expression, glial activation. and T cell infiltration. Expression levels of C2ta and Cd74 followed similar patterns, in contrast to MHC class I and markers of glial activation. The regulatory region of the C2ta gene was subsequently sequenced in the four strains (C57BL/6/J, DBA/2J, SJL/J and 129X1/SvJ) that represented the phenotypical extremes with regard to C2ta/Cd74 expression. We found 3 single nucleotide polymorphisms in the type I (pI) and type III (pIII) promoters of C2ta, respectively. Higher expression of pI in 129X1/SvJ correlated with the pI haplotype specific for this strain. Furthermore, congenic strains carrying the 129X1/SvJ C2ta allele on B6 background displayed significantly higher C2ta and Cd74 expression compared to parental controls. We conclude that genetic polymorphisms in the type I promoter of C2ta regulates differential expression of MHC class II, but not MHC class I, Cd3 and other markers of glial activation. (C) 2009 Elsevier B.V. All rights reserved.
  •  
15.
  • Harnesk, Karin, et al. (författare)
  • Vra4 Congenic Rats with Allelic Differences in the Class II Transactivator Gene Display Altered Susceptibility to Experimental Autoimmune Encephalomyelitis
  • 2008
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 180:5, s. 3289-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Presentation of Ag bound to MHC class II (MHC II) molecules to CD4+ T cells is a key event in adaptive immune responses. Genetic differences in MHC II expression in the rat CNS were recently positioned to allelic variability in the CIITA gene (Mhc2ta), located within the Vra4 locus on rat chromosome 10. In this study, we have examined reciprocal Vra4-congenic strains on the DA and PVGav1 backgrounds, respectively. After experimental nerve injury the strain-specific MHC II expression on microglia was reversed in the congenic strains. Similar findings were obtained after intraparenchymal injection of IFN-gamma in the brain. Expression of MHC class II was also lower on B cells and dendritic cells from the DA.PVGav1-Vra4- congenic strain compared with DA rats after in vitro stimulation with IFN-gamma. We next explored whether Vra4 may affect the outcome of experimental autoimmune disease. In experimental autoimmune encephalomyelitis induced by immunization with myelin oligodendrocyte glycoprotein, DA.PVGav1-Vra4 rats displayed a lower disease incidence and milder disease course compared with DA, whereas both PVGav1 and PVGav1.DA-Vra4 rats were completely protected. These results demonstrate that naturally occurring allelic differences in Mhc2ta have profound effects on the quantity of MHC II expression in the CNS and on immune cells and that this genetic variability also modulates susceptibility to autoimmune neuroinflammation.
  •  
16.
  • Jewett, Michael, et al. (författare)
  • Glutathione S-transferase alpha 4 prevents dopamine neurodegeneration in a rat alpha-synuclein model of Parkinson's disease
  • 2018
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 9:APR
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is a common, progressive neurodegenerative disease, which typically presents itself with a range of motor symptoms, like resting tremor, bradykinesia, and rigidity, but also non-motor symptoms such as fatigue, constipation, and sleep disturbance. Neuropathologically, PD is characterized by loss of dopaminergic cells in the substantia nigra pars compacta (SNpc) and Lewy bodies, neuronal inclusions containing a-synuclein (a-syn). Mutations and copy number variations of SNCA, the gene encoding a-syn, are linked to familial PD and common SNCA gene variants are associated to idiopathic PD. Large-scale genome-wide association studies have identified risk variants across another 40 loci associated to idiopathic PD. These risk variants do not, however, explain all the genetic contribution to idiopathic PD. The rat Vra1 locus has been linked to neuroprotection after nerve- and brain injury in rats. Vra1 includes the glutathione S-transferase alpha 4 (Gsta4) gene, which encodes a protein involved in clearing lipid peroxidation by-products. The DA.VRA1 congenic rat strain, carrying PVG alleles in Vra1 on a DA strain background, was recently reported to express higher levels of Gsta4 transcripts and to display partial neuroprotection of SNpc dopaminergic neurons in a 6-hydroxydopamine (6-OHDA) induced model for PD. Since a-syn expression increases the risk for PD in a dose-dependent manner, we assessed the neuroprotective effects of Vra1 in an a-syn-induced PD model. Human wild-type a-syn was overexpressed by unilateral injections of the rAAV6-a-syn vector in the SNpc of DA and DA.VRA1 congenic rats. Gsta4 gene expression levels were significantly higher in the striatum and midbrain of DA.VRA1 compared to DA rats at 3 weeks post surgery, in both the ipsilateral and contralateral sides. At 8 weeks post surgery, DA.VRA1 rats suffered significantly lower fiber loss in the striatum and lower loss of dopaminergic neurons in the SNpc compared to DA. Immunofluorescent stainings showed co-expression of Gsta4 with Gfap at 8 weeks suggesting that astrocytic expression of Gsta4 underlies Vra1-mediated neuroprotection to a-syn induced pathology. This is the second PD model in which Vra1 is linked to protection of the nigrostriatal pathway, solidifying Gsta4 as a potential therapeutic target in PD.
  •  
17.
  • Jimenez-Ferrer, Itzia, et al. (författare)
  • The MHC class II transactivator modulates seeded alpha-synuclein pathology and dopaminergic neurodegeneration in an in vivo rat model of Parkinson's disease
  • 2021
  • Ingår i: Brain, Behavior, and Immunity. - : Elsevier BV. - 0889-1591. ; 91, s. 369-382
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Abnormal folding, aggregation and spreading of alpha-synuclein (αsyn) is a mechanistic hypothesis for the progressive neuropathology in Parkinson's disease (PD). Spread of αsyn between cells is supported by clinical, neuropathological and experimental evidence. It has been proposed that a pro-inflammatory micro-environment in response to αsyn can promote its aggregation. We have previously shown that allelic differences in the major histocompatibility complex class two transactivator (Mhc2ta) gene, located in the VRA4 locus, alter MHCII expression levels, microglial activation and antigen presentation capacity in rats upon human αsyn over-expression. In addition, Mhc2ta regulated dopaminergic neurodegeneration and the extent of motor impairment. The purpose of this study was to determine whether Mhc2ta regulates αsyn aggregation, propagation and dopaminergic pathology in an αsyn pre-formed fibril (PFF)-seeded in vivo model of PD. Methods: The DA and DA.VRA4 congenic rat strains share background genome but display differential microglial antigen presenting capacity due to different Mhc2ta alleles in the VRA4 locus. PFFs of human αsyn or BSA solution were injected unilaterally to the striatum of DA and DA.VRA4 rats two weeks after ipsilateral administration of recombinant adeno-associated virus (rAAV) vectors carrying human αsyn or GFP to the substantia nigra pars compacta. Behavioural assessment was performed at 2, 5 and 8 weeks while histological evaluation of αsyn pathology, inflammation and neurodegeneration as well as determination of serum cytokine profiles were performed at 8 weeks. Results: rAAV-mediated expression of human αsyn in nigral dopaminergic neurons combined with striatal PFF administration induced enhanced αsyn pathology in DA.VRA4 compared to DA rats. Mhc2ta thus significantly regulated the seeding, propagation and toxicity of αsyn in vivo. This was reflected in terms of wider extent and anatomical distribution of αsyn inclusions, ranging from striatum to the forebrain, midbrain, hindbrain and cerebellum in DA.VRA4. Compared to DA rats, DA.VRA4 also displayed enhanced motor impairment and dopaminergic neurodegeneration as well as higher levels of the proinflammatory cytokines IL-2 and TNFα in serum. Conclusions: We conclude that the key regulator of MHCII expression, Mhc2ta, modulates neuroinflammation, αsyn-seeded Lewy-like pathology, dopaminergic neurodegeneration and motor impairment. This makes Mhc2ta and microglial antigen presentation promising therapeutic targets for reducing the progressive neuropathology and clinical manifestations in PD.
  •  
18.
  • Jimenez, Itzia, et al. (författare)
  • Allelic difference in Mhc2ta confers altered microglial activation and susceptibility to α-synuclein-induced dopaminergic neurodegeneration
  • 2017
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 106, s. 279-290
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's Disease (PD) is a complex and heterogeneous neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta and pathological intracellular accumulation of alpha-synuclein (α-syn). In the vast majority of PD patients, the disease has a complex etiology, defined by multiple genetic and environmental risk factors. Common genetic variants in the human leukocyte-antigen (HLA) region have been associated to PD risk and the carriage of these can double the risk to develop PD. Among these common genetic variants are the ones that modulate the expression of MHCII genes. MHCII molecules encoded in the HLA-region are responsible for antigen presentation to the adaptive immune system and have a key role in inflammatory processes. In addition to cis‑variants affecting MHCII expression, a transactivator encoded by the Mhc2ta gene is the major regulator of MHCII expression. We have previously identified variations in the promoter region of Mhc2ta, encoded in the VRA4 region, to regulate MHCII expression in rats. The expression of MHCII is known to be required in the response to α-syn. However, how the expression of MHCII affects the activation of microglial or the impact of physiological, differential Mhc2ta expression on degeneration of dopaminergic neurons has not previously been addressed. Here we addressed the implications of common genetic allelic variants of the major regulator of MHCII expression on α-syn-induced microglia activation and the severity of the dopaminergic neurodegeneration. We used a viral vector technology to overexpress α-syn in two rat strains; Dark agouti (DA) wild type and DA.VRA4-congenic rats. The congenic strain carries PVG alleles in the VRA4 locus and therefore displays lower Mhc2ta expression levels compared to DA rats. We analyzed the impact of this physiological differential Mhc2ta expression on gliosis, inflammation, degeneration of the nigro-striatal dopamine system and behavioral deficits after α-syn overexpression. We report that allelic variants of Mhc2ta differently modified the microglial activation in response to overexpression of human α-syn in rats. Overexpression of α-syn led to a larger denervation of the nigro-striatal system and significant behavioral deficits in DA.VRA4 congenic rats with lower Mhc2ta expression compared to DA rats. These results indicate that Mhc2ta is a key upstream regulator of the inflammatory response in PD pathology.
  •  
19.
  • Kumar, Jitender, et al. (författare)
  • LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways.
  • 2011
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 49, s. 343-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a common complex disorder in postmenopausal women leading to changes in the micro-architecture of bone and increased risk of fracture. Members of the low-density lipoprotein receptor-related protein (LRP) gene family regulates the development and physiology of bone through the Wnt/β-catenin (Wnt) pathway that in turn cross-talks with the bone morphogenetic protein (BMP) pathway. In two cohorts of Swedish women: OPRA (n=1002; age 75years) and PEAK-25 (n=1005; age 25years), eleven single nucleotide polymorphisms (SNPs) from Wnt pathway genes (LRP4; LRP5; G protein-coupled receptor 177, GPR177) were analyzed for association with Bone Mineral Density (BMD), rate of bone loss, hip geometry, quantitative ultrasound and fracture. Additionally, interaction of LRP4 with LRP5, GPR177 and BMP2 were analyzed. LRP4 (rs6485702) was associated with higher total body (TB) and lumbar spine (LS) BMD in the PEAK-25 cohort (p=0.006 and 0.005 respectively), and interaction was observed with LRP5 (p=0.007) and BMP2 (p=0.004) for TB BMD. LRP4 also showed significant interaction with LRP5 for femoral neck (FN) and LS BMD in this cohort. In the OPRA cohort, LRP4 polymorphisms were associated with significantly lower fracture incidence overall (p=0.008-0.001) and fewer hip fractures (rs3816614, p=0.006). Significant interaction in the OPRA cohort was observed for LRP4 with BMP2 and GPR177 for FN BMD as well as for rate of bone loss at TB and FN (p=0.007-0.0001). In conclusion, LRP4 and interaction between LRP4 and genes in the Wnt and BMP signaling pathways modulate bone phenotypes including peak bone mass and fracture, the clinical endpoint of osteoporosis.
  •  
20.
  • Kurowska, Zuzanna, et al. (författare)
  • Identification of Multiple QTLs Linked to Neuropathology in the Engrailed-1 Heterozygous Mouse Model of Parkinson's Disease
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Motor symptoms in Parkinson's disease are attributed to degeneration of midbrain dopaminergic neurons (DNs). Heterozygosity for Engrailed-1 (En1), one of the key factors for programming and maintenance of DNs, results in a parkinsonian phenotype featuring progressive degeneration of DNs in substantia nigra pars compacta (SNpc), decreased striatal dopamine levels and swellings of nigro-striatal axons in the SwissOF1-En1+/- mouse strain. In contrast, C57Bl/6-En1+/- mice do not display this neurodegenerative phenotype, suggesting that susceptibility to En1 heterozygosity is genetically regulated. Our goal was to identify quantitative trait loci (QTLs) that regulate the susceptibility to PD-like neurodegenerative changes in response to loss of one En1 allele. We intercrossed SwissOF1-En1+/- and C57Bl/6 mice to obtain F2 mice with mixed genomes and analyzed number of DNs in SNpc and striatal axonal swellings in 120 F2-En1+/- 17 week-old male mice. Linkage analyses revealed 8 QTLs linked to number of DNs (p = 2.4e-09, variance explained = 74%), 7 QTLs linked to load of axonal swellings (p = 1.7e-12, variance explained = 80%) and 8 QTLs linked to size of axonal swellings (p = 7.0e-11, variance explained = 74%). These loci should be of prime interest for studies of susceptibility to Parkinson's disease-like damage in rodent disease models and considered in clinical association studies in PD.
  •  
21.
  • Lagerholm, Sofia, et al. (författare)
  • Genetic loci for bone architecture determined by three-dimensional CT in crosses with the diabetic GK rat.
  • 2010
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 47, s. 1039-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • The F344 rat carries alleles contributing to bone fragility while the GK rat spontaneously develops type-2 diabetes. These characteristics make F344xGK crosses well suited for the identification of genes related to bone size and allow for future investigation on the association with type-2 diabetes. The aim of this study was to identify quantitative trait loci (QTLs) for bone size phenotypes measured by a new application of three-dimensional computed tomography (3DCT) and to investigate the effects of sex- and reciprocal cross. Tibia from male and female GK and F344 rats, representing the parental, F1 and F2 generations, were examined with 3DCT and analyzed for: total and cortical volumetric BMD, straight and curved length, peri- and endosteal area at mid-shaft. F2 progeny (108 male and 98 female) were genotyped with 192 genome-wide microsatellite markers (average distance 10cM). Sex- and reciprocal cross-separated QTL analyses were performed for the identification of QTLs linked to 3DCT phenotypes and true interactions were confirmed by likelihood ratio analysis in all F2 animals. Several genome-wide significant QTLs were found in the sex- and reciprocal cross-separated progeny on chromosomes (chr) 1, 3, 4, 9, 10, 14, and 17. Overlapping QTLs for both males and females in the (GKxF344)F2 progeny were located on chr 1 (39-67cM). This region confirms previously reported pQCT QTLs and overlaps loci for fasting glucose. Sex separated linkage analysis confirmed a male specific QTL on chr 9 (67-82cM) for endosteal area at the fibula site. Analyses separating the F2 population both by sex and reciprocal cross identified cross specific QTLs on chr 14 (males) and chr 3 and 4 (females). Two loci, chr 4 and 6, are unique to 3DCT and separate from pQCT generated loci. The 3DCT method was highly reproducible and provided high precision measurements of bone size in the rat enabling identification of new sex- and cross-specific loci. The QTLs on chr 1 indicate potential genetic association between bone-related phenotypes and traits affecting type-2 diabetes. The results illustrate the complexity of the genetic architecture of bone size phenotypes and demonstrate the importance of complementary methods for bone analysis.
  •  
22.
  • Lagerholm, Sofia, et al. (författare)
  • Identification of Candidate Gene Regions in the Rat by Co-Localization of QTLs for Bone Density, Size, Structure and Strength.
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Susceptibility to osteoporotic fracture is influenced by genetic factors that can be dissected by whole-genome linkage analysis in experimental animal crosses. The aim of this study was to characterize quantitative trait loci (QTLs) for biomechanical and two-dimensional dual-energy X-ray absorptiometry (DXA) phenotypes in reciprocal F2 crosses between diabetic GK and normo-glycemic F344 rat strains and to identify possible co-localization with previously reported QTLs for bone size and structure. The biomechanical measurements of rat tibia included ultimate force, stiffness and work to failure while DXA was used to characterize tibial area, bone mineral content (BMC) and areal bone mineral density (aBMD). F2 progeny (108 males, 98 females) were genotyped with 192 genome-wide markers followed by sex- and reciprocal cross-separated whole-genome QTL analyses. Significant QTLs were identified on chromosome 8 (tibial area; logarithm of odds (LOD) = 4.7 and BMC; LOD = 4.1) in males and on chromosome 1 (stiffness; LOD = 5.5) in females. No QTLs showed significant sex-specific interactions. In contrast, significant cross-specific interactions were identified on chromosome 2 (aBMD; LOD = 4.7) and chromosome 6 (BMC; LOD = 4.8) for males carrying F344mtDNA, and on chromosome 15 (ultimate force; LOD = 3.9) for males carrying GKmtDNA, confirming the effect of reciprocal cross on osteoporosis-related phenotypes. By combining identified QTLs for biomechanical-, size- and qualitative phenotypes (pQCT and 3D CT) from the same population, overlapping regions were detected on chromosomes 1, 3, 4, 6, 8 and 10. These are strong candidate regions in the search for genetic risk factors for osteoporosis.
  •  
23.
  • Lindqvist, Maria, et al. (författare)
  • Genetic relatedness of multi-resistant methicillin-susceptible Staphylococcus aureus in southeast Sweden
  • 2014
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background: A high exchange of patients occurs between the hospitals in southeast Sweden, resulting in a possible transmission of nosocomial pathogens. The objective of this study was to investigate the incidence and possible genetic relatedness of multi-resistant methicillinsusceptible Staphylococcus aureus (MSSA) in the region in general, and in particular the possible persistence and transmission of the ECT-R clone (t002) showing resistance to erythromycin, clindamycin and tobramycin previously found in Östergötland County.Methods: Three groups of S. aureus isolates with different antibiotic resistance profiles, including the ECT-R profile, were collected from the three County Councils in southeast Sweden and investigated with spa typing, real-time PCR targeting the staphylococcal cassette chromosome (SCC) mec right extremity junction (MREJ), and microarray.Results: All isolates with the ECT-R resistance profile (n = 12) from Östergötland County and two additional isolates with another antibiotic resistance profile were designated spa type t002, MREJ type ii, and were clustered in the same clonal cluster (CC) (i.e. CC5) by the microarray result, indicating the persistence of the ECT-R clone. In addition, 60 % of the isolates belonged to CC15 from newborns, with 94 % sharing spa type t084, indicating interhospital transmission.Conclusions: The persistence of the ECT-R clone and the possible transmission of the t084 strain indicate that there is still an insufficiency in the maintenance of basic hygiene guidelines. The ECT-R clone probably possesses mechanisms of virulence and transmission that make it so successful.
  •  
24.
  • Lindqvist, Maria, et al. (författare)
  • Long-term persistence of a multi-resistant methicillin-susceptible Staphylococcus aureus (MR-MSSA) clone at a university hospital in southeast Sweden, without further transmission within the region
  • 2015
  • Ingår i: European Journal of Clinical Microbiology and Infectious Diseases. - : Springer Verlag (Germany). - 0934-9723 .- 1435-4373. ; 34:7, s. 1415-1422
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study was to characterise isolates of methicillin-susceptible Staphylococcus aureus (MSSA) with resistance to clindamycin and/or tobramycin in southeast Sweden, including the previously described ECT-R clone (t002) found in Östergotland County, focusing on clonal relatedness, virulence determinants and existence of staphylococcal cassette chromosome (SCC) mec remnants. MSSA isolates with resistance to clindamycin and/or tobramycin were collected from the three county councils in southeast Sweden and investigated with spa typing, polymerase chain reaction (PCR) targeting the SCCmec right extremity junction (MREJ) and DNA microarray technology. The 98 isolates were divided into 40 spa types, and by microarray clustered in 17 multi-locus sequence typing (MLST) clonal complexes (MLST-CCs). All isolates with combined resistance to clindamycin and tobramycin (n = 12) from Östergotland County and two additional isolates (clindamycin-R) were designated as spa type t002, MREJ type ii and were clustered in CC5, together with a representative isolate of the ECT-R clone, indicating the clones persistence. These isolates also carried several genes encoding exotoxins, Q9XB68-dcs and qacC. Of the isolates in CC15, 83 % (25/30) were tobramycin-resistant and were designated spa type t084. Of these, 68 % (17/25) were isolated from new-borns in all three counties. The persistence of the ECT-R clone in Östergotland County, although not found in any other county in the region, carrying certain virulence factors that possibly enhance its survival in the hospital environment, highlights the fact that basic hygiene guidelines must be maintained even when MRSA prevalence is low.
  •  
25.
  • Puschmann, Andreas, et al. (författare)
  • Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism
  • 2017
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 140:1, s. 98-117
  • Tidskriftsartikel (refereegranskat)abstract
    • SEE GANDHI AND PLUN-FAVREAU DOI101093/AWW320 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: It has been postulated that heterozygous mutations in recessive Parkinson's genes may increase the risk of developing the disease. In particular, the PTEN-induced putative kinase 1 (PINK1) p.G411S (c.1231G>A, rs45478900) mutation has been reported in families with dominant inheritance patterns of Parkinson's disease, suggesting that it might confer a sizeable disease risk when present on only one allele. We examined families with PINK1 p.G411S and conducted a genetic association study with 2560 patients with Parkinson's disease and 2145 control subjects. Heterozygous PINK1 p.G411S mutations markedly increased Parkinson's disease risk (odds ratio = 2.92, P = 0.032); significance remained when supplementing with results from previous studies on 4437 additional subjects (odds ratio = 2.89, P = 0.027). We analysed primary human skin fibroblasts and induced neurons from heterozygous PINK1 p.G411S carriers compared to PINK1 p.Q456X heterozygotes and PINK1 wild-type controls under endogenous conditions. While cells from PINK1 p.Q456X heterozygotes showed reduced levels of PINK1 protein and decreased initial kinase activity upon mitochondrial damage, stress-response was largely unaffected over time, as expected for a recessive loss-of-function mutation. By contrast, PINK1 p.G411S heterozygotes showed no decrease of PINK1 protein levels but a sustained, significant reduction in kinase activity. Molecular modelling and dynamics simulations as well as multiple functional assays revealed that the p.G411S mutation interferes with ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric complex. This impairs the protective functions of the PINK1/parkin-mediated mitochondrial quality control. Based on genetic and clinical evaluation as well as functional and structural characterization, we established p.G411S as a rare genetic risk factor with a relatively large effect size conferred by a partial dominant-negative function phenotype.
  •  
26.
  •  
27.
  • Swanberg, Maria, et al. (författare)
  • Animal Models of Parkinson’s Disease
  • 2018
  • Ingår i: Parkinson's Disease : Pathogenesis and Clinical Aspects - Pathogenesis and Clinical Aspects. - : Codon Publications. - 9780994438164 ; , s. 83-106
  • Bokkapitel (refereegranskat)abstract
    • Parkinson’s disease (PD) is a heterogenous disease with a varying age of onset, symptoms, and rate of progression. This heterogeneity requires the use of a variety of animal models to study different aspects of the disease. Neurotoxin-based approaches include exposure of rodents or non-human primates to 6-OHDA, MPTP, and agrochemicals such as the pesticide rotenone, the herbicide paraquat, and the fungicide maneb. Acute exposure to neurotoxins induces motor deficits and rapid nigro-striatal dopaminergic cell death by disrupting mitochondrial function and/or increasing oxidative stress, while chronic administration of neurotoxins induces progressive models which can include alpha-synuclein (α-synuclein) aggregates. Genetic-based approaches to model Parkinson’s disease include transgenic models and viral vector-mediated models based on genes linked to monogenic Parkinson’s disease, including SNCA, LRRK2, UCH-L1, PRKN, PINK1, and and DJ-1, as well as manipulation of dopaminergic transcription factors. SNCA mutations, overexpression, and introduction of α-synuclein preformed fibrils induce toxic protein aggregates and variable nigro-striatal neurodegeneration and motor deficits, depending on the specific model. Species, genetic background of a strain, and environment affect the display of symptoms and neurodegenerative hallmarks of animal models. These models can be combined to study the interplay between genetics and environment and untangle the heterogeneity and mechanisms underlying Parkinson’s disease. In this chapter, we discuss the strengths and limitations of mouse, rat, and non-human primate models of Parkinson’s disease.
  •  
28.
  • Swanberg, Maria (författare)
  • Genetic regulation of nerve injury-induced neurodegeneration and inflammation
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Neurodegeneration and inflammation in the central nervous system (CNS) are hallmarks of several neurological disorders, including multiple sclerosis (MS), Alzheimer’s disease and Parkinson’s disease. The susceptibility of an individual to these conditions is complex, i.e. influenced by both genetic and environmental factors. To study the genetic component of complex traits, experimental models are valuable tools to control for the impact of environment and to perform genetic mapping in large sample size intercrosses between inbred strains. The studies included in this thesis are based on the finding that inbred rat strains respond differently to nerve injury both with regard to degree of neurodegeneration and inflammatory responses, and aim at describing the phenotypic differences between strains in response to nerve injury in order to identify genetic regions regulating these parameters. The ultimate goal is to identify candidate genes of relevance to human disease. We first performed a genome-wide linkage study of the responses to nerve injury by ventral root avulsion (VRA) in an F2 intercross between DA and PVG rat strains. This identified four loci regulating the degree of neurodegeneration (Vra1, 2), T cell infiltration (Vra2, 3) and major histocompatibility complex (MHC) class II expression (Vra4). From these results, we can conclude that the complex responses to nerve injury can be genetically dissected and are regulated by independent (Vra1, 3, 4), as well as linked or identical loci (Vra2). The Vra4 locus displayed a very strong linkage to MHC class II expression by microglia after injury (logarithm of odds, LOD 27.4). Next, to position a candidate gene, Vra4 was fine-mapped by use of an advanced intercross line between DA and PVGav1 strains. By additional use of haplotype maps, sequencing and expression analysis of genes in the region, the MHC class II transactivator, Mhc2ta was identified as the candidate gene. A polymorphism in the corresponding human gene, MHC2TA was found to mediate differential expression of MHC class II transcripts and was genetically associated to the susceptibility to the three inflammatory disorders MS, rheumatoid arthritis and myocardial infarction. In the third study, congenic rats where the Vra4 region harboring Mhc2ta had been transferred from PVGav1 to DA and vice versa, were studied with regard to MHC class II expression in the CNS and susceptibility to the MS model experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein. The expression of MHC class II was determined by the Vra4 allele and was thus reversed in the congenics compared to their respective background strain. In addition, Vra4 alleles from PVGav1 transferred to the susceptible DA background genome conferred significant protection from clinical manifestations of EAE. The phenotypic differences between the DA and PVG were further studied by analyzing the global gene transcription levels with microarrays. This identified a common response to VRA at a transcriptional level as well as strain specific patterns with inflammatory genes prevailing in the DA rats. In addition, two genes differing in expression between the strains, C1qb and Timp1 correlated to the degree of neurodegeneration in genetically heterogeneous animals. In conclusion; neurodegeneration and inflammation in the CNS can be genetically dissected in rat strains displaying phenotypic differences in the response to nerve injury, and identified candidate genes can be of relevance to human disease.
  •  
29.
  • Swanberg, Maria, et al. (författare)
  • Immunogenetics of Parkinson's disease
  • 2018
  • Ingår i: Parkinson’s Disease : Pathogenesis and Clinical Aspects - Pathogenesis and Clinical Aspects. - : Codon Publications. - 9780994438164 ; , s. 27-44
  • Bokkapitel (refereegranskat)abstract
    • Inflammation is a key feature of Parkinson’s disease (PD). In postmortem PD brains, microglial activation and enhanced major histocompatibility class II (MHCII) expression are seen concomitant to the accumulation of alpha-synuclein (α-synuclein) and loss of dopaminergic cells in the substantia nigra. Recent findings showed that α-synuclein epitopes can be presented and recognized by T-cells. PD is not a single disorder; rather, it encompasses a range of clinical, epidemiological, and genetic subtypes. Around 10% of the cases have a monogenic origin, and several of the disease-causing mutations are linked to inflammatory processes. The remaining 90% of the cases are complex, where environmental and genetic risk factors synergize to induce PD pathology. To date, 41 genetic loci have been identified in genome-wide association studies as associated with PD risk, and among these, two are within the HLA region, coding for immune genes including MHCII. Thus, genetic and immune findings indicate that the immune system has a role in the etiology of PD. Experimentally, inflammatory stimuli can cause selective nigral cell loss in preclinical models of PD, and MHCII is required to elicit α-synuclein-induced pathology in mice. In this chapter, we focus on immunogenetics, that is, the relation between genetic risk factors and immune processes in PD.
  •  
30.
  • Swanberg, Maria, et al. (författare)
  • MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction
  • 2005
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 37:5, s. 486-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Antigen presentation to T cells by MHC molecules is essential for adaptive immune responses. To determine the exact position of a gene affecting expression of MHC molecules, we finely mapped a previously defined rat quantitative trait locus regulating MHC class II on microglia in an advanced intercross line. We identified a small interval including the gene MHC class II transactivator (Mhc2ta) and, using a map over six inbred strains combined with gene sequencing and expression analysis, two conserved Mhc2ta haplotypes segregating with MHC class II levels. In humans, a -168A --> G polymorphism in the type III promoter of the MHC class II transactivator (MHC2TA) was associated with increased susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction, as well as lower expression of MHC2TA after stimulation of leukocytes with interferon-gamma. We conclude that polymorphisms in Mhc2ta and MHC2TA result in differential MHC molecule expression and are associated with susceptibility to common complex diseases with inflammatory components.
  •  
31.
  • Swanberg, Maria, et al. (författare)
  • Polymorphisms in the Inflammatory Genes CIITA, CLEC16A and IFNG Influence BMD, Bone Loss and Fracture in Elderly Women.
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoclast activity and the fine balance between bone formation and resorption is affected by inflammatory factors such as cytokines and T lymphocyte activity, mediated by major histocompatibility complex (MHC) molecules, in turn regulated by the MHC class II transactivator (MHC2TA). We investigated the effect of functional polymorphisms in the MHC2TA gene (CIITA), and two additional genes; C-type lectin domain 16A (CLEC16A), in linkage disequilibrium with CIITA and Interferon-γ (IFNG), an inducer of CIITA; on bone density, bone resorption markers, bone loss and fracture risk in 75 year-old women followed for up to 10 years (OPRA n = 1003) and in young adult women (PEAK-25 n = 999). CIITA was associated with BMD at age 75 (lumbar spine p = 0.011; femoral neck (FN) p = 0.049) and age 80 (total body p = 0.015; total hip p = 0.042; FN p = 0.028). Carriers of the CIITA rs3087456(G) allele had 1.8-3.4% higher BMD and displayed increased rate of bone loss between age 75 and 80 (FN p = 0.013; total hip p = 0.030; total body p = 3.8E(-5)). Despite increasing bone loss, the rs3087456(G) allele was protective against incident fracture overall (p = 0.002), osteoporotic fracture and hip fracture. Carriers of CLEC16A and IFNG variant alleles had lower BMD (p<0.05) and ultrasound parameters and a lower risk of incident fracture (CLEC16A, p = 0.011). In 25-year old women, none of the genes were associated with BMD. In conclusion, variation in inflammatory genes CIITA, CLEC-16A and INFG appear to contribute to bone phenotypes in elderly women and suggest a role for low-grade inflammation and MHC class II expression for osteoporosis pathogenesis.
  •  
32.
  • Swanberg, Maria, et al. (författare)
  • Polymorphisms in the macrophage migration inhibitory factor gene and bone loss in postmenopausal women.
  • 2010
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 47:2, s. 424-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a severe condition in postmenopausal women and a common cause of fracture. Osteoporosis is a complex disease with a strong genetic impact, but susceptibility is determined by many genes with modest effects and environmental factors. Only a handful of genes consistently associated with osteoporosis have been identified so far. Inflammation affects bone metabolism by interfering with the interplay between bone resorption and formation, and many inflammatory mediators are involved in natural bone remodeling. The cytokine macrophage migration inhibitory factor (MIF) has been shown to affect bone density in rodents, and polymorphisms in the human MIF promoter are associated with inflammatory disorders such as rheumatoid arthritis. We investigated the association of polymorphisms in the MIF gene with bone mineral density (BMD) and bone loss in 1002 elderly women using MIF promoter polymorphisms MIF-CATT(5-8) and rs755622(G/C) located -794 and -173 bp upstream of the transcriptional start site. Bone loss was estimated both by the change in BMD over 5 years and by the levels of bone resorption markers in serum measured at four occasions during a 5-year period. The MIF-CATT(7)/rs755622(C) haplotype was associated with increased rate of bone loss during 5 years at the femoral neck (p<0.05) and total hip (p<0.05). In addition, the MIF-CATT(7)/rs755622(C) haplotype carriers had higher levels of the bone turnover marker serum C-terminal cross-linking telopeptide of type I collagen (S-CTX-I, p<0.01) during the 5 year follow-up period. There was no association between MIF-CATT(7)/rs755622(C) and baseline BMD at femoral neck, total hip or lumbar spine. We conclude that MIF promoter polymorphisms have modest effects on bone remodeling and are associated with the rate of bone loss in elderly women.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-32 av 32
Typ av publikation
tidskriftsartikel (25)
forskningsöversikt (2)
bokkapitel (2)
annan publikation (1)
konferensbidrag (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (30)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Swanberg, Maria (29)
Jiménez-Ferrer, Itzi ... (8)
Olsson, Tomas (6)
Åkesson, Kristina (6)
Piehl, Fredrik (5)
Puschmann, Andreas (5)
visa fler...
McGuigan, Fiona (5)
Brolin, Kajsa (5)
Hansson, Oskar (4)
Lidman, Olle (4)
Blauwendraat, Cornel ... (4)
Gerdhem, Paul (3)
Luthman, Holger (3)
Deierborg, Tomas (3)
Boza-Serrano, Antoni ... (3)
Diez, Margarita (3)
Bandres-Ciga, Sara (3)
Harnesk, Karin (3)
Park, Hee-Bok (2)
Landin-Olsson, Mona (2)
Carlsson, Annelie (2)
Alfredsson, Lars (2)
Lobell, Anna (2)
Orho-Melander, Marju (2)
Ludvigsson, Johnny (2)
Lindqvist, Maria (2)
Padyukov, Leonid (2)
Ross, Owen A. (2)
Hällgren, Anita (2)
Isaksson, Barbro (2)
Odin, Per (2)
Yang, Yiyi (2)
Widner, Håkan (2)
Chen, Li (2)
Asad, Samina (2)
Paulus, Agnes (2)
Jagodic, Maja (2)
Dueñas Rey, Alfredo (2)
Stoker, Thomas B. (2)
Silburn, Peter A. (2)
Mellick, George D. (2)
Gan-Or, Ziv (2)
Caulfield, Thomas R. (2)
Fiesel, Fabienne C. (2)
Springer, Wolfdieter (2)
Aasly, Jan O. (2)
Wszolek, Zbigniew K. (2)
Klein, Christine (2)
Lynch, Timothy (2)
Opala, Grzegorz (2)
visa färre...
Lärosäte
Lunds universitet (26)
Karolinska Institutet (11)
Linköpings universitet (4)
Göteborgs universitet (3)
Umeå universitet (3)
Uppsala universitet (2)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (28)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy