SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swart Sebastiaan 1983) "

Sökning: WFRF:(Swart Sebastiaan 1983)

  • Resultat 1-50 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Azarian, Clara, et al. (författare)
  • Marine heatwaves and global warming impacts on winter waters in the Southern Indian Ocean
  • 2024
  • Ingår i: Journal of Marine Systems. - 0924-7963. ; 243
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Southern Ocean, the term “winter waters” (WWs) refers to a water mass characterized by a subsurface layer of minimum temperature that plays an important ecological role for marine ecosystems, and in particular for top predators. Given that the Southern Ocean is experiencing warming and intense marine heatwaves (MHWs), particularly at subantarctic latitudes, we investigate here how different levels of warming might impact the presence, depth and minimum temperature of WWs in the Indian sector of the Southern Ocean. In particular, we assess how WWs are impacted by surface MHWs using in situ Argo hydrographic observations and biologging data. The results indicate that WWs are substantially reduced, deeper and warmer during the presence of MHWs. Using the most recent climate projections, we find a significant, but scenario-dependent, southward shift of WWs under global warming. Potential impacts of such WW shifts on pelagic ecosystems, at different timescales (from daily to decadal), are discussed.
  •  
3.
  •  
4.
  •  
5.
  • Clayson, C. A., et al. (författare)
  • Super sites for advancing understanding of the oceanic and atmospheric boundary layers
  • 2021
  • Ingår i: Marine Technology Society Journal. - 0025-3324. ; 55:3, s. 144-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Air–sea interactions are critical to large-scale weather and climate predictions because of the ocean’s ability to absorb excess atmospheric heat and carbon and regulate exchanges of momentum, water vapor, and other greenhouse gases. These exchanges are controlled by molecular, turbulent, and wave-driven processes in the atmospheric and oceanic boundary layers. Improved understanding and representation of these processes in models are key for increasing Earth system prediction skill, particularly for subseasonal to decadal time scales. Our understanding and ability to model these processes within this coupled system is presently inadequate due in large part to a lack of data: contemporaneous long-term observations from the top of the marine atmospheric boundary layer (MABL) to the base of the oceanic mixing layer. We propose the concept of “Super Sites” to provide multi-year suites of measurements at specific locations to simultaneously characterize physical and biogeochemical processes within the coupled boundary layers at high spatial and temporal resolution. Measurements will be made from floating platforms, buoys, towers, and autonomous vehicles, utilizing both in-situ and remote sensors. The engineering challenges and level of coordination, integration, and interoperability required to develop these coupled ocean–atmosphere Super Sites place them in an “Ocean Shot” class. © 2021, Marine Technology Society Inc.. All rights reserved.
  •  
6.
  • Cronin, Meghan F., et al. (författare)
  • Air-sea fluxes with a focus on heat and momentum
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Cronin, Gentemann, Edson, Ueki, Bourassa, Brown, Clayson, Fairall, Farrar, Gille, Gulev, Josey, Kato, Katsumata, Kent, Krug, Minnett, Parfitt, Pinker, Stackhouse, Swart, Tomita, Vandemark, Weller, Yoneyama, Yu and Zhang. Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m-2 and a bias of less than 5 W m-2. At present this accuracy target is met only at OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500 - 1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1 - 3 measurement platforms in each nominal 10° by 10° boxes. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean's influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.
  •  
7.
  • Cronin, M. F., et al. (författare)
  • Developing an Observing Air-Sea Interactions Strategy (OASIS) for the global ocean
  • 2022
  • Ingår i: Ices Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 80:2, s. 367-73
  • Tidskriftsartikel (refereegranskat)abstract
    • The Observing Air-Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air-sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our "Theory of Change" relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs'19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air-sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air-sea fluxes; and #3: improved representation of air-sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable-Accessible-Interoperable-Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.
  •  
8.
  • de Vos, Marc, et al. (författare)
  • Evaluating numerical and free-drift forecasts of sea ice drift during a Southern Ocean research expedition: An operational perspective
  • 2022
  • Ingår i: Journal of operational oceanography. Publisher: The Institute of Marine Engineering, Science & Technology. - 1755-876X .- 1755-8778. ; 15:3, s. 187-203
  • Tidskriftsartikel (refereegranskat)abstract
    • Antarctic sea ice is prevalently seen as a major player in the climate system, but it is also an important factor in polar maritime safety. Remote sensing and forecasting of Southern Ocean sea ice at time scales suitable for navigation and research planning remain challenging. In this study, numerical sea ice drift forecasts are assessed from the perspective of informing shipping operations. A series of tests is performed to ascertain whether an operational global ocean and sea ice model and a simple free-drift model can provide accurate drift estimates over short lead times. Both approaches are evaluated against ice drift measurements from buoys deployed during two research cruises in the Southern Ocean marginal ice zone during winter and spring. The numerical forecast model was able to forecast sea ice trajectories over 24 h with an average position error of 16.6 km during winter and 9.2 km during spring. The simpler free-drift model, using empirically optimised wind scaling, returned an average position error of 15.9 and 9.3 km during winter and spring respectively. Model skill for both the dynamical and free-drift models is lower in winter than in spring. Free-drift model skill appears linked with sea ice consolidation, which may assist in determining when and where this approach is fit for purpose. Lingering uncertainties regarding the rheological representation of sea ice in the dynamical model and the quality of the wind and ocean forcing remain, potentially affecting model skill over tactical navigation time frames.
  •  
9.
  • D'Ovidio, Francesco, et al. (författare)
  • Frontiers in fine-scale in situ studies: Opportunities during the SWOT fast sampling phase
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • © 2019 Frontiers Media S. A. Conceived as a major new tool for climate studies, the Surface Water and Ocean Topography (SWOT) satellite mission will launch in late 2021 and will retrieve the dynamics of the oceans upper layer at an unprecedented resolution of a few kilometers. During the calibration and validation (CalVal) phase in 2022, the satellite will be in a 1- day-repeat fast sampling orbit with enhanced temporal resolution, sacrificing the spatial coverage. This is an ideal opportunity - unique for many years to come - to coordinate in situ experiments during the same period for a focused study of fine scale dynamics and their broader roles in the Earth system. Key questions to be addressed include the role of fine scales on the ocean energy budget, the connection between their surface and internal dynamics, their impact on plankton diversity, and their biophysical dynamics at the ice margin.
  •  
10.
  • Du Plessis, Marcel, et al. (författare)
  • Southern Ocean Seasonal Restratification Delayed by Submesoscale Wind–Front Interactions
  • 2019
  • Ingår i: Journal of Physical Oceanography. - 0022-3670. ; 49:4, s. 1035-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean stratification and the vertical extent of the mixed layer influence the rate at which the ocean and atmosphere exchange properties. This process has direct impacts for anthropogenic heat and carbon uptake in the Southern Ocean. Submesoscale instabilities that evolve over space (1–10 km) and time (from hours to days) scales directly influence mixed layer variability and are ubiquitous in the Southern Ocean. Mixed layer eddies contribute to mixed layer restratification, while down-front winds, enhanced by strong synoptic storms, can erode stratification by a cross-frontal Ekman buoyancy flux. This study investigates the role of these submesoscale processes on the subseasonal and interannual variability of the mixed layer stratification using four years of high-resolution glider data in the Southern Ocean. An increase of stratification from winter to summer occurs due to a seasonal warming of the mixed layer. However, we observe transient decreases in stratification lasting from days to weeks, which can arrest the seasonal restratification by up to two months after surface heat flux becomes positive. This leads to interannual differences in the timing of seasonal restratification by up to 36 days. Parameterizing the Ekman buoyancy flux in a one-dimensional mixed layer model reduces the magnitude of stratification compared to when the model is run using heat and freshwater fluxes alone. Importantly, the reduced stratification occurs during the spring restratification period, thereby holding important implications for mixed layer dynamics in climate models as well as physical–biological coupling in the Southern Ocean.
  •  
11.
  • du Plessis, M., et al. (författare)
  • Submesoscale processes promote seasonal restratification in the Subantarctic Ocean
  • 2017
  • Ingår i: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 122:4, s. 2960-2975
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditionally, the mechanism driving the seasonal restratification of the Southern Ocean mixed layer (ML) is thought to be the onset of springtime warming. Recent developments in numerical modeling and North Atlantic observations have shown that submesoscale ML eddies (MLE) can drive a restratifying flux to shoal the deep winter ML prior to solar heating at high latitudes. The impact of submesoscale processes on the intraseasonal variability of the Subantarctic ML is still relatively unknown. We compare 5 months of glider data in the Subantarctic Zone to simulations of a 1-D mixing model to show that the magnitude of restratification of the ML cannot be explained by heat, freshwater, and momentum fluxes alone. During early spring, we estimate that periodic increases in the vertical buoyancy flux by MLEs caused small increases in stratification, despite predominantly down-front winds that promote the destruction of stratification. The timing of seasonal restratification was consistent between 1-D model estimates and the observations. However, during up-front winds, the strength of springtime stratification increased over twofold compared to the 1-D model, with a rapid shoaling of the MLD from >200 m to <100 m within a few days. The ML stratification is further modified under a negative Ekman buoyancy flux during down-front winds, resulting in the destruction of ML stratification and deepening of the MLD. These results propose the importance of submesoscale buoyancy fluxes enhancing seasonal restratification and mixing of the Subantarctic ML.
  •  
12.
  • du Plessis, Marcel, 1990, et al. (författare)
  • The Daily-Resolved Southern Ocean Mixed Layer: Regional Contrasts Assessed Using Glider Observations
  • 2022
  • Ingår i: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 127:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Water mass transformation in the Southern Ocean is vital for driving the large-scale overturning circulation, which transports heat from the surface to the ocean interior. Using profiling gliders, this study investigates the role of summertime buoyancy forcing and wind-driven processes on the intraseasonal (1-10 days) mixed layer thermohaline variability in three Southern Ocean regions southwest of Africa important for water mass transformation-the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), and Marginal Ice Zone (MIZ). At intraseasonal time scales, heat flux was shown as the main driver of buoyancy gain in all regions. In the SAZ and MIZ, shallow mixed layers and strong stratification enhanced mixed layer buoyancy gain by trapping incoming heat, while buoyancy loss resulted primarily from the entrainment of cold, salty water from below. In the PFZ, rapid mixing linked to Southern Ocean storms set persistently deep mixed layers and suppressed mixed layer intraseasonal thermohaline variability. In the polar regions, lateral stirring of meltwater from seasonal sea-ice melt dominated daily mixed layer salinity variability. We propose that these meltwater fronts are advected to the PFZ during late summer, indicating the potential for seasonal sea-ice freshwater to impact a region where the upwelling limb of overturning circulation reaches the surface. This study reveals a regional dependence of how the mixed layer thermohaline properties respond to small spatiotemporal processes, emphasizing the importance of surface forcing occurring between 1 and 10 days on the mixed layer water mass transformation in the Southern Ocean.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Gille, Sarah, et al. (författare)
  • Mixing in the Southern Ocean
  • 2021
  • Ingår i: Ocean Mixing, Drivers, Mechanisms and Impacts. - : Elsevier. - 9780128215128 ; , s. 301-27
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
20.
  • Gregor, L., et al. (författare)
  • GliderTools: A Python Toolbox for Processing Underwater Glider Data
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Underwater gliders have become widely used in the last decade. This has led to a proliferation of data and the concomitant development of tools to process the data. These tools are focused primarily on converting the data from its raw form to more accessible formats and often rely on proprietary programing languages. This has left a gap in the processing of glider data for academics, who often need to perform secondary quality control (QC), calibrate, correct, interpolate and visualize data. Here, we present GliderTools, an open-source Python package that addresses these needs of the glider user community. The tool is designed to change the focus from the processing to the data. GliderTools does not aim to replace existing software that converts raw data and performs automatic first-order QC. In this paper, we present a set of tools, that includes secondary cleaning and calibration, calibration procedures for bottle samples, fluorescence quenching correction, photosynthetically available radiation (PAR) corrections and data interpolation in the vertical and horizontal dimensions. Many of these processes have been described in several other studies, but do not exist in a collated package designed for underwater glider data. Importantly, we provide potential users with guidelines on how these tools are used so that they can be easily and rapidly accessible to a wide range of users that span the student to the experienced researcher. We recognize that this package may not be all-encompassing for every user and we thus welcome community contributions and promote GliderTools as a community-driven project for scientists.
  •  
21.
  •  
22.
  • Krug, M., et al. (författare)
  • Submesoscale cyclones in the Agulhas current
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:1, s. 346-354
  • Tidskriftsartikel (refereegranskat)abstract
    • ©2016. American Geophysical Union. All Rights Reserved.Gliders were deployed for the first time in the Agulhas Current region to investigate processes of interactions between western boundary currents and shelf waters. Continuous observations from the gliders in water depths of 100–1000 m and over a period of 1 month provide the first high-resolution observations of the Agulhas Current's inshore front. The observations collected in a nonmeandering Agulhas Current show the presence of submesoscale cyclonic eddies, generated at the inshore boundary of the Agulhas Current. The submesoscale cyclones are often associated with warm water plumes, which extend from their western edge and exhibit strong northeastward currents. These features are a result of shear instabilities and extract their energy from the mean Agulhas Current jet.
  •  
23.
  •  
24.
  •  
25.
  • Meijers, Andrew, et al. (författare)
  • Southern Ocean
  • 2019
  • Ingår i: Bulletin of The American Meteorological Society -. - : American Meteorological Society.
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
26.
  • Mohrmann, Martin, et al. (författare)
  • Observed Mixing at the Flanks of Maud Rise in the Weddell Sea
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Maud Rise is a seamount in the eastern Weddell Sea and the location of polynyas and a persistent halo of reduced sea ice. We present novel in situ data from two profiling floats with up to daily resolved hydrographic profiles in this region. The water properties below the mixed layer of the Maud Rise region are significantly correlated with bathymetric depth; thus, the Maud Rise flank defines the front between the Warm Deep Water of the abyssal ocean and the colder Taylor cap over Maud Rise. We analyze the spiciness curvature in density space to quantify the observed frequency or magnitude of intrusions, which are substantially increased along the flanks of Maud Rise. These intrusions are indicative of enhanced lateral and vertical mixing along heavily sloping isopycnals, creating favorable conditions for thermobaric and double diffusive convection and likely facilitating the formation of the Maud Rise halo and polynyas.
  •  
27.
  • Mohrmann, Martin, et al. (författare)
  • Southern Ocean polynyas in CMIP6 models
  • 2021
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 15:9, s. 4281-4313
  • Tidskriftsartikel (refereegranskat)abstract
    • Polynyas facilitate air–sea fluxes, impacting climate-relevant properties such as sea ice formation and deep water production. Despite their importance, polynyas have been poorly represented in past generations of climate models. Here we present a method to track the presence, frequency and spatial distribution of polynyas in the Southern Ocean in 27 models participating in the Climate Model Intercomparison Project Phase 6 (CMIP6) and two satellite-based sea ice products. Only half of the 27 models form open-water polynyas (OWPs), and most underestimate their area. As in satellite observations, three models show episodes of high OWP activity separated by decades of no OWP, while other models unrealistically create OWPs nearly every year. In contrast, the coastal polynya area is overestimated in most models, with the least accurate representations occurring in the models with the coarsest horizontal resolution. We show that the presence or absence of OWPs is linked to changes in the regional hydrography, specifically the linkages between polynya activity with deep water convection and/or the shoaling of the upper water column thermocline. Models with an accurate Antarctic Circumpolar Current transport and wind stress curl have too frequent OWPs. Biases in polynya representation continue to exist in climate models, which has an impact on the regional ocean circulation and ventilation that should be addressed. However, emerging iceberg discharge schemes, more adequate vertical grid type or overflow parameterisation are anticipated to improve polynya representations and associated climate prediction in the future.
  •  
28.
  • Newman, Louise, et al. (författare)
  • Delivering sustained, coordinated and integrated observations of the Southern Ocean for global impact
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and deliver the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress towards addressing the need for sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths more than 2000 m, the air-sea-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, platform interrogation and data-transmission technologies, modeling frameworks, and internationally agreed sampling requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, towards achieving the SOOS vision and delivering essential data to all end users.
  •  
29.
  • Nicholson, S. A., et al. (författare)
  • Iron Supply Pathways Between the Surface and Subsurface Waters of the Southern Ocean: From Winter Entrainment to Summer Storms
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 46:24, s. 14567-14575
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved iron (DFe) plays an immeasurable role in shaping the biogeochemical processes of the open-ocean Southern Ocean. However, due to observational constraints iron supply pathways remain poorly understood. Using an idealized eddy-resolving physical-biogeochemical model representing a turbulent sector of the Southern Ocean with seasonal buoyancy forcing and zonal winds overlaid by storms, we quantify the importance of a range of subsurface and surface iron supply mechanisms. The main physical supply pathways to the surface layer are via eddy advection and winter convective mixing in equal proportions. The associated subsurface loss of DFe is restocked via net remineralization (75%) and eddy advection (25%). Summer storms resulted in weak DFe supplies relative to the seasonal supplies (<7.6%). However, in situations of deep summer mixed layers and when interacting with underlying ocean fronts, summer storms resulted in enhanced diffusive and advective DFe supplies and raised summer primary production by 20% for several days.
  •  
30.
  • Nicholson, Sarah‐Anne, et al. (författare)
  • Storms drive outgassing of CO2 in the subpolar Southern Ocean
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The subpolar Southern Ocean is a critical region where CO2 outgassing influences the global mean air-sea CO2 flux (FCO2). However, the processes controlling the outgassing remain elusive. We show, using a multi-glider dataset combining FCO2 and ocean turbulence, that the air-sea gradient of CO2 (∆pCO2) is modulated by synoptic storm-driven ocean variability (20 µatm, 1–10 days) through two processes. Ekman transport explains 60% of the variability, and entrainment drives strong episodic CO2 outgassing events of 2–4 mol m−2 yr−1. Extrapolation across the subpolar Southern Ocean using a process model shows how ocean fronts spatially modulate synoptic variability in ∆pCO2 (6 µatm2 average) and how spatial variations in stratification influence synoptic entrainment of deeper carbon into the mixed layer (3.5 mol m−2 yr−1 average). These results not only constrain aliased-driven uncertainties in FCO2 but also the effects of synoptic variability on slower seasonal or longer ocean physics-carbon dynamics.
  •  
31.
  • Oelerich, Ria, et al. (författare)
  • Stirring across the Antarctic Circumpolar Current's southern boundary at the prime meridian, Weddell Sea
  • 2023
  • Ingår i: Ocean Science. - 1812-0784 .- 1812-0792. ; 19:5, s. 1465-1482
  • Tidskriftsartikel (refereegranskat)abstract
    • At the southern boundary of the Antarctic Circumpolar Current (ACC), relatively warm ACC waters encounter the colder waters surrounding Antarctica. Strong density gradients across the southern boundary indicate the presence of a frontal jet and are thought to modulate the southward heat transport across the front. In this study, the southern boundary in the Weddell Sea sector at the prime meridian is surveyed for the first time in high resolution over 2 months during an austral summer with underwater gliders occupying a transect across the front on five occasions. The five transects show that the frontal structure (i.e. hydrography, velocities and lateral density gradients) varies temporally. The results demonstrate significant, transient (a few weeks) variability of the southern boundary and its frontal jet in location, strength and width. A mesoscale cold-core eddy is identified to disrupt the southern boundary's frontal structure and strengthen lateral density gradients across the front. The front's barrier properties are assessed using mixing length scales and potential vorticity to establish the cross-frontal exchange of properties between the ACC and the Weddell Gyre. The results show that stronger lateral density gradients caused by the mesoscale eddy strengthen the barrier-like properties of the front through reduced mixing length scales and pronounced gradients of potential vorticity. In contrast, the barrier-like properties of the southern boundary are reduced when no mesoscale eddy is influencing the density gradients across the front. Using satellite altimetry, we further demonstrate that the barrier properties over the past decade have strengthened as a result of increased meridional gradients of absolute dynamic topography and increased frontal jet speeds in comparison to previous decades. Our results emphasise that locally and rapidly changing barrier properties of the southern boundary are important to quantify the cross-frontal exchange, which is particularly relevant in regions where the southern boundary is located near the Antarctic shelf break (e.g. in the West Antarctic sector).
  •  
32.
  • Queste, Bastien, 1987, et al. (författare)
  • State of the Climate in 2019; Southern Ocean
  • 2020
  • Ingår i: Bulletin of The American Meteorological Society -. - 0003-0007 .- 1520-0477. ; 6, s. 307-25
  • Tidskriftsartikel (refereegranskat)
  •  
33.
  •  
34.
  • Sallee, J. B., et al. (författare)
  • Southern ocean carbon and heat impact on climate
  • 2023
  • Ingår i: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 1364-503X .- 1471-2962. ; 381:2249
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Ocean greatly contributes to the regulation of the global climate by controlling important heat and carbon exchanges between the atmosphere and the ocean. Rates of climate change on decadal timescales are therefore impacted by oceanic processes taking place in the Southern Ocean, yet too little is known about these processes. Limitations come both from the lack of observations in this extreme environment and its inherent sensitivity to intermittent processes at scales that are not well captured in current Earth system models. The Southern Ocean Carbon and Heat Impact on Climate programme was launched to address this knowledge gap, with the overall objective to understand and quantify variability of heat and carbon budgets in the Southern Ocean through an investigation of the key physical processes controlling exchanges between the atmosphere, ocean and sea ice using a combination of observational and modelling approaches. Here, we provide a brief overview of the programme, as well as a summary of some of the scientific progress achieved during its first half. Advances range from new evidence of the importance of specific processes in Southern Ocean ventilation rate (e.g. storm-induced turbulence, sea-ice meltwater fronts, wind-induced gyre circulation, dense shelf water formation and abyssal mixing) to refined descriptions of the physical changes currently ongoing in the Southern Ocean and of their link with global climate.This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
  •  
35.
  •  
36.
  • Santini, Marcello, et al. (författare)
  • Observations of air-sea heat fluxes in the Southwestern Atlantic under high-frequency ocean and atmospheric perturbations
  • 2020
  • Ingår i: Quarterly Journal of the Royal Meteorological Society. - : Wiley. - 0035-9009 .- 1477-870X. ; 146:733, Part B
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulent air–sea heat fluxes were computed from in situ high‐frequency micrometeorological data during two research cruises performed in the southwestern Atlantic Ocean (SWAO) occurring in June 2012 and October 2014. Two different and dynamical areas were covered by the cruises: the Brazil‐Malvinas Confluence (BMC) and the Southern Brazilian Continental Shelf (SBCS). The eddy covariance (EC) method was used to estimate the air–sea sensible‐ and latent‐heat fluxes. This article compares these novel high‐frequency estimates of heat fluxes with bulk parametrizations made at the same location and time from independent measurements taken on board the ships. When comparing the EC and bulk‐estimated time series of sensible‐heat fluxes, we found a good agreement both in their magnitude and variability, with small bias (generally <20W·m−2) between the datasets from the two study areas in the SWAO. However, the EC and bulk latent‐heat flux comparisons show large biases ranging from 75W·m−2 to 100W·m−2 in the SBCS and BMC, respectively. These biases were always associated with short‐term, high‐frequency environmental perturbations occurring either in the atmosphere or in the ocean with the majority related to strong wind burst events and large air–sea temperature gradients. The short period changes in atmospheric conditions were mostly related to the passage of transient synoptic systems over the two study areas. The large air–sea temperature gradients were mostly linked to the surface characteristics of the BMC and SBCS regions, where sharp oceanographic fronts are located. Our results are able to contribute to improving weather and climate simulations of the mid‐ to high latitudes of South America, a region largely influenced by the sea‐surface temperature patterns of the SWAO in combination with the frequent propagation of transient atmospheric systems.
  •  
37.
  •  
38.
  • Smith, Gregory C., et al. (författare)
  • Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability. However, a significant gap exists in the ocean observing system in polar regions, compared to most areas of the global ocean, hindering the reliability of ocean and sea ice forecasts. This gap can also be seen from the spread in ocean and sea ice reanalyses for polar regions which provide an estimate of their uncertainty. The reduced reliability of polar predictions may affect the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Here, we outline the status of existing near-real time ocean observational efforts in polar regions, discuss gaps, and explore perspectives for the future. Specific recommendations include a renewed call for open access to data, especially real-time data, as a critical capability for improved sea ice and weather forecasting and other environmental prediction needs. Dedicated efforts are also needed to make use of additional observations made as part of the Year of Polar Prediction (YOPP; 2017-19) to inform optimal observing system design. To provide a polar extension to the Argo network, it is recommended that a network of ice-borne sea ice and upper-ocean observing buoys be deployed and supported operationally in ice-covered areas together with autonomous profiling floats and gliders (potentially with ice detection capability) in seasonally-ice covered seas. Finally, additional efforts to better measure and parameterize surface exchanges in polar regions are much needed to improve coupled environmental prediction.
  •  
39.
  • Smith, Shawn R., et al. (författare)
  • Ship-based contributions to global ocean, weather, and climate observing systems
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • © 2019 Smith, Alory, Andersson, Asher, Baker, Berry, Drushka, Figurskey, Freeman, Holthus, Jickells, Kleta, Kent, Kolodziejczyk, Kramp, Loh, Poli, Schuster, Steventon, Swart, Tarasova, Petit De La Villéon and Vinogradova Shiffer. The role ships play in atmospheric, oceanic, and biogeochemical observations is described with a focus on measurements made within 100 m of the ocean surface. Ships include merchant and research vessels, cruise liners and ferries, fishing vessels, coast guard, military, and other government-operated ships, yachts, and a growing fleet of automated surface vessels. The present capabilities of ships to measure essential climate/ocean variables and the requirements from a broad community to address operational, commercial, and scientific needs are described. Following the guidance from the OceanObs'19 organizing committee, the authors provide a vision to expand observations needed from ships to understand and forecast the exchanges across the ocean-atmosphere interface. The vision addresses (1) recruiting vessels to improve both spatial and temporal sampling, (2) conducting multi-variate sampling on ships, (3) raising technology readiness levels of automated shipboard sensors and ship-to-shore data communications, (4) advancing quality evaluation of observations, and (5) developing a unified data management approach for observations and metadata that meets the needs of a diverse user community. Recommendations are made focusing on integrating private and autonomous vessels into the observing system, investing in sensor and communications technology development, developing an integrated data management structure that includes all types of ships, and moving towards a quality evaluation process that will result in a subset of ships being defined as mobile reference ships that will support climate studies. We envision a future where commercial, research, and privately-owned vessels are making multivariate observations using a combination of automated and human-observed measurements. All data and metadata will be documented, tracked, evaluated, distributed, and archived to benefit users of marine data. This vision looks at ships as a holistic network, not a set of disparate commercial, research, and/or third-party activities working in isolation, to bring these communities together for the mutual benefit of all.
  •  
40.
  • Souza, Ronald, et al. (författare)
  • Air-Sea Interactions over Eddies in the Brazil-Malvinas Confluence
  • 2021
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Brazil–Malvinas Confluence (BMC) is one of the most dynamical regions of the global ocean. Its variability is dominated by the mesoscale, mainly expressed by the presence of meanders and eddies, which are understood to be local regulators of air-sea interaction processes. The objective of this work is to study the local modulation of air-sea interaction variables by the presence of either a warm (ED1) and a cold core (ED2) eddy, present in the BMC, during September to November 2013. The translation and lifespans of both eddies were determined using satellite-derived sea level anomaly (SLA) data. Time series of satellite-derived surface wind data, as well as these and other meteorological variables, retrieved from ERA5 reanalysis at the eddies’ successive positions in time, allowed us to investigate the temporal modulation of the lower atmosphere by the eddies’ presence along their translation and lifespan. The reanalysis data indicate a mean increase of 78% in sensible and 55% in latent heat fluxes along the warm eddy trajectory in comparison to the surrounding ocean of the study region. Over the cold core eddy, on the other hand, we noticed a mean reduction of 49% and 25% in sensible and latent heat fluxes, respectively, compared to the adjacent ocean. Additionally, a field campaign observed both eddies and the lower atmosphere from ship-borne observations before, during and after crossing both eddies in the study region during October 2013. The presence of the eddies was imprinted on several surface meteorological variables depending on the sea surface temperature (SST) in the eddy cores. In situ oceanographic and meteorological data, together with high frequency micrometeorological data, were also used here to demonstrate that the local, rather than the large scale forcing of the eddies on the atmosphere above, is, as expected, the principal driver of air-sea interaction when transient atmospheric systems are stable (not actively varying) in the study region. We also make use of the in situ data to show the differences (biases) between bulk heat flux estimates (used on atmospheric reanalysis products) and eddy covariance measurements (taken as “sea truth”) of both sensible and latent heat fluxes. The findings demonstrate the importance of short-term changes (minutes to hours) in both the atmosphere and the ocean in contributing to these biases. We conclude by emphasizing the importance of the mesoscale oceanographic structures in the BMC on impacting local air-sea heat fluxes and the marine atmospheric boundary layer stability, especially under large scale, high-pressure atmospheric conditions.
  •  
41.
  •  
42.
  • Swart, Sebastiaan, 1983, et al. (författare)
  • Constraining Southern ocean air-sea-ice fluxes through enhanced observations
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • © 2019 Swart, Gille, Delille, Josey, Mazloff, Newman, Thompson, Thomson, Ward, Du Plessis, Kent, Girton, Gregor, H, Hyder, Pezzi, De Souza, Tamsitt, Weller and Zappa. Air-sea and air-sea-ice fluxes in the Southern Ocean play a critical role in global climate through their impact on the overturning circulation and oceanic heat and carbon uptake. The challenging conditions in the Southern Ocean have led to sparse spatial and temporal coverage of observations. This has led to a 'knowledge gap' that increases uncertainty in atmosphere and ocean dynamics and boundary-layer thermodynamic processes, impeding improvements in weather and climate models. Improvements will require both process-based research to understand the mechanisms governing air-sea exchange and a significant expansion of the observing system. This will improve flux parameterizations and reduce uncertainty associated with bulk formulae and satellite observations. Improved estimates spanning the full Southern Ocean will need to take advantage of ships, surface moorings, and the growing capabilities of autonomous platforms with robust and miniaturized sensors. A key challenge is to identify observing system sampling requirements. This requires models, Observing System Simulation Experiments (OSSEs), and assessments of the specific spatial-temporal accuracy and resolution required for priority science and assessment of observational uncertainties of the mean state and direct flux measurements. Year-round, high-quality, quasi-continuous in situ flux measurements and observations of extreme events are needed to validate, improve and characterize uncertainties in blended reanalysis products and satellite data as well as to improve parameterizations. Building a robust observing system will require community consensus on observational methodologies, observational priorities, and effective strategies for data management and discovery.
  •  
43.
  • Swart, Sebastiaan, 1983, et al. (författare)
  • Ocean robotics in support of fisheries research and management
  • 2016
  • Ingår i: African Journal of Marine Science. - 1814-232X .- 1814-2338. ; 38:4, s. 525-538
  • Tidskriftsartikel (refereegranskat)abstract
    • South Africa’s small-pelagic fishery is a socio-economically important component of the country’s commercial fisheries sector, second in value only to the demersal trawl fishery. Management of this sector relies on infrequent hydro-acoustic surveys, which provide measures of anchovy Engraulis encrasicolus and sardine Sardinops sagax biomass used in the assessments of stock status and in the development of management plans for the sustainable utilisation of these resources. We demonstrate how technological capabilities in ocean robotics at the Council for Scientific and Industrial Research (CSIR) could augment the current resource-intensive hydro-acoustic ship-based survey programme and create opportunities for expanding its spatial and temporal resolution. We successfully implement and demonstrate an autonomous wave glider, fitted with a hydro-acoustic sensor and compare the data to a collocated ‘traditional’ ship-based acoustics survey. In the future these autonomous systems approaches could be seen as a means to lessen the cost burden of the ship-based survey, while at the same time with the added advantage of continuous collection over much wider spatial and temporal domains. This could enable a more reflexive stock management approach taking into account the seasonal characteristics of the fishery and its ecosystem. Gliders thus have potential to increase dramatically the quantity of information available to fisheries managers, thereby reducing uncertainty and contributing to improved management of valuable fish resources. They are likely to contribute to improved knowledge of the ecology of small pelagic fish species off the coast of South Africa in a changing climate and should potentially also permit the collection of biomass data for other marine resources currently not routinely monitored.
  •  
44.
  •  
45.
  •  
46.
  • Swart, Sebastiaan, 1983, et al. (författare)
  • Submesoscale Fronts in the Antarctic Marginal Ice Zone and Their Response to Wind Forcing
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 47:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Submesoscale flows in the ocean are energetic motions, O(1–10 km), that influence stratification and the distributions of properties, such as heat and carbon. They are believed to play an important role in sea‐ice‐impacted oceans by modulating air‐sea‐ice fluxes and sea‐ice extent. The intensity of these flows and their response to wind forcing are unobserved in the sea‐ice regions of the Southern Ocean. We present the first submesoscale‐resolving observations in the Antarctic marginal ice zone (MIZ) collected by surface and underwater autonomous vehicles, for >3 months in austral summer. We observe salinity‐dominated lateral density fronts occurring at sub‐kilometer scales. Surface winds are shown to modify the magnitude of the mixed‐layer density fronts, revealing strongly coupled atmosphere‐ocean processes. We posture that these wind‐front interactions occur as a continuous interplay between front slumping and vertical mixing, which leads to the dispersion of submesoscale fronts. Such processes are expected to be ubiquitous in the Southern Ocean MIZ.
  •  
47.
  •  
48.
  • Testor, Pierre, et al. (författare)
  • OceanGliders: A component of the integrated GOOS
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintian and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
  •  
49.
  •  
50.
  • Thomalla, Sandy, et al. (författare)
  • Using Optical Sensors on Gliders to Estimate Phytoplankton Carbon Concentrations and Chlorophyll-to-Carbon Ratios in the Southern Ocean
  • 2017
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745.
  • Tidskriftsartikel (refereegranskat)abstract
    • One approach to deriving phytoplankton carbon biomass estimates (Cphyto) at appropriate scales is through optical products. This study uses a high-resolution glider data set in the Sub-Antarctic Zone (SAZ) of the Southern Ocean to compare four different methods of deriving Cphyto from particulate backscattering and fluorescence-derived chlorophyll (chl-a). A comparison of the methods showed that at low (<0.5 mg m−3) chlorophyll concentrations (e.g., early spring and at depth), all four methods produced similar estimates of Cphyto, whereas when chlorophyll concentrations were elevated one method derived higher concentrations of Cphyto than the others. The use of methods derived from particulate backscattering rather than fluorescence can account for cellular adjustments in chl-a:Cphyto that are not driven by biomass alone. A comparison of the glider chl-a:Cphyto ratios from the different optical methods with ratios from laboratory cultures and cruise data found that some optical methods of deriving Cphyto performed better in the SAZ than others and that regionally derived methods may be unsuitable for application to the Southern Ocean. A comparison of the glider chl-a:Cphyto ratios with output from a complex biogeochemical model shows that although a ratio of 0.02 mg chl-a mg C−1 is an acceptable mean for SAZ phytoplankton (in spring-summer), the model misrepresents the seasonal cycle (with decreasing ratios from spring to summer and low sub-seasonal variability). As such, it is recommended that models expand their allowance for variable chl-a:Cphyto ratios that not only account for phytoplankton acclimation to low light conditions in spring but also to higher optimal chl-a:Cphyto ratios with increasing growth rates in summer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 53

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy