SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Szatkiewicz J. P.) "

Sökning: WFRF:(Szatkiewicz J. P.)

  • Resultat 1-32 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
2.
  • Bryois, J., et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
3.
  •  
4.
  • Watson, H. J., et al. (författare)
  • Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness(1), affecting 0.9-4% of women and 0.3% of men(2-4), with twin-based heritability estimates of 50-60%(5). Mortality rates are higher than those in other psychiatric disorders(6), and outcomes are unacceptably poor(7). Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)(8,9) and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Adewumi, Oluseun, et al. (författare)
  • Characterization of human embryonic stem cell lines by the International Stem Cell Initiative
  • 2007
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 25:7, s. 803-816
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue- nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Halvorsen, Matthew, et al. (författare)
  • Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 11:1, s. 1842-
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite considerable progress in schizophrenia genetics, most findings have been for large rare structural variants and common variants in well-imputed regions with few genes implicated from exome sequencing. Whole genome sequencing (WGS) can potentially provide a more complete enumeration of etiological genetic variation apart from the exome and regions of high linkage disequilibrium. We analyze high-coverage WGS data from 1162 Swedish schizophrenia cases and 936 ancestry-matched population controls. Our main objective is to evaluate the contribution to schizophrenia etiology from a variety of genetic variants accessible to WGS but not by previous technologies. Our results suggest that ultra-rare structural variants that affect the boundaries of topologically associated domains (TADs) increase risk for schizophrenia. Alterations in TAD boundaries may lead to dysregulation of gene expression. Future mechanistic studies will be needed to determine the precise functional effects of these variants on biology.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • Song, J, et al. (författare)
  • The impact of educational attainment, intelligence and intellectual disability on schizophrenia: a Swedish population-based register and genetic study
  • 2022
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 27:5, s. 2439-2447
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia (SCZ) is highly heterogenous and no subtypes characterizing treatment response or longitudinal course well. Cognitive impairment is a core clinical feature of SCZ and a determinant of poorer outcome. Genetic overlap between SCZ and cognitive traits is complex, with limited studies of comprehensive epidemiological and genomic evidence. To examine the relation between SCZ and three cognitive traits, educational attainment (EDU), premorbid cognitive ability, and intellectual disability (ID), we used two Swedish samples: a national cohort (14,230 SCZ cases and 3,816,264 controls) and a subsample with comprehensive genetic data (4992 cases and 6009 controls). Population-based analyses confirmed worse cognition as a risk factor for SCZ, and the pedigree and SNP-based genetic correlations were comparable. In the genotyped cases, those with high EDU and premorbid cognitive ability tended to have higher polygenetic risk scores (PRS) of EDU and intelligence and fewer rare exonic variants. Finally, by applying an empirical clustering method, we dissected SCZ cases into four replicable subgroups characterized by EDU and ID. In particular, the subgroup with higher EDU in the national cohort had fewer adverse outcomes including long hospitalization and death. In the genotyped subsample, this subgroup had higher PRS of EDU and no excess of rare genetic burdens than controls. In conclusion, we found extensive evidence of a robust relation between cognitive traits and SCZ, underscoring the importance of cognition in dissecting the heterogeneity of SCZ.
  •  
31.
  • Szatkiewicz, JP, et al. (författare)
  • Copy number variation in schizophrenia in Sweden
  • 2014
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 19:7, s. 762-773
  • Tidskriftsartikel (refereegranskat)
  •  
32.
  • Wen, J, et al. (författare)
  • Rare tandem repeat expansions associate with genes involved in synaptic and neuronal signaling functions in schizophrenia
  • 2023
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 28:21, s. 475-482
  • Tidskriftsartikel (refereegranskat)abstract
    • Tandem repeat expansions (TREs) are associated with over 60 monogenic disorders and have recently been implicated in complex disorders such as cancer and autism spectrum disorder. The role of TREs in schizophrenia is now emerging. In this study, we have performed a genome-wide investigation of TREs in schizophrenia. Using genome sequence data from 1154 Swedish schizophrenia cases and 934 ancestry-matched population controls, we have detected genome-wide rare (<0.1% population frequency) TREs that have motifs with a length of 2–20 base pairs. We find that the proportion of individuals carrying rare TREs is significantly higher in the schizophrenia group. There is a significantly higher burden of rare TREs in schizophrenia cases than in controls in genic regions, particularly in postsynaptic genes, in genes overlapping brain expression quantitative trait loci, and in brain-expressed genes that are differentially expressed between schizophrenia cases and controls. We demonstrate that TRE-associated genes are more constrained and primarily impact synaptic and neuronal signaling functions. These results have been replicated in an independent Canadian sample that consisted of 252 schizophrenia cases of European ancestry and 222 ancestry-matched controls. Our results support the involvement of rare TREs in schizophrenia etiology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-32 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy