SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Szczerba R.) "

Sökning: WFRF:(Szczerba R.)

  • Resultat 1-33 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Graauw, Th., et al. (författare)
  • The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L6-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods: The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s-1. Results: After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
2.
  • Gupta, H., et al. (författare)
  • Detection of OH+ and H2O+ towards Orion KL
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L47-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of the reactive molecular ions OH+, H2O+, and H3O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H2O+ 111-000 transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H3O+. OH+ and H2O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s-1, and a broad blueshifted absorption similar to that reported recently for HF and para-H218O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H2O+ for the 9 km s-1 component of 9 ± 3 × 1012 cm-2 and 7 ± 2 × 1012 cm-2, and those in the outflow of 1.9 ± 0.7 × 1013 cm-2 and 1.0 ± 0.3 × 1013 cm-2. Upper limits of 2.4 × 1012 cm-2 and 8.7 × 1012 cm-2 were derived for the column densities of ortho and para-H3O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.
  •  
3.
  • Bergin, E. A., et al. (författare)
  • Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L33-
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a sensitive search for the ground-state emission lines of ortho-and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3 sigma levels in 0.5 km s(-1) channels of 4.2 mK for the 1(10)-1(01) line and 12.6 mK for the 1(11)-0(00) line. We report a very tentative detection, however, of the 1(10)-1(01) line in the wide band spectrometer, with a strength of T-mb = 2.7 mK, a width of 5.6 km s(-1) and an integrated intensity of 16.0 mK km s(-1). The latter constitutes a 6 sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane.
  •  
4.
  • Chavarria, L., et al. (författare)
  • Water in massive star-forming regions : HIFI observations of W3 IRS5
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L37-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-(H2O)-O-17 1(10)-1(01), p-(H2O)-O-18 1(11)-0(00), p-H2O 2(02)-1(11), p-H2O 1(11)-0(00), o-H2O 2(21)-2(12), and o-H2O 2(12)-1(01) lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 1(11)-0(00) and o-H2O 2(12)-1(01) lines show absorption from the cold material (T similar to 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T greater than or similar to 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10(-4)) is needed to reproduce the o-(H2O)-O-17 1(10)-1(01) and p-(H2O)-O-18 1(11)-0(00) spectra in our models. We estimate water abundances of 10(-8) to 10(-9) in the outer parts of the envelope (T less than or similar to 100 K). The possibility of two protostellar objects contributing to the emission is discussed.
  •  
5.
  • Comito, C., et al. (författare)
  • Herschel observations of deuterated water towards Sgr B2(M)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L38-
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes - grain surfaces versus energetic process in the gas phase, e. g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5 x 10(-11)) in the outer envelope at temperatures below 100 K through a medium abundance (1.5 x 10(-9)) in the inner envelope/outer core at temperatures between 100 and 200 K, and finally a high abundance (3.5 x 10(-9)) at temperatures above 200 K in the hot core.
  •  
6.
  • Falgarone, E., et al. (författare)
  • CH+(1-0) and 13CH+(1-0) absorption lines in the direction of massive star-forming regions
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of the ground-state rotational transition of the methylidyne cation CH+ and its isotopologue (CH+)-C-13 toward the remote massive star-forming regions W33A, W49N, and W51 with the HIFI instrument onboard the Herschel satellite. Both lines are seen only in absorption against the dust continuum emission of the star-forming regions. The CH+ absorption is saturated over almost the entire velocity ranges sampled by the lines-of-sight that include gas associated with the star-forming regions (SFR) and Galactic foreground material. The CH+ column densities are inferred from the optically thin components. A lower limit of the isotopic ratio [(CH+)-C-12]/[(CH+)-C-13]> 35.5 is derived from the absorptions of foreground material toward W49N. The column density ratio, N(CH+)/N(HCO+), is found to vary by at least a factor 10, between 4 and > 40, in the Galactic foreground material. Line-of-sight 12CH+ average abundances relative to total hydrogen are estimated. Their average value, N(CH+)/NH > 2.6 x 10(-8), is higher than that observed in the solar neighborhood and confirms the high abundances of CH+ in the Galactic interstellar medium. We compare this result to the predictions of turbulent dissipation regions (TDR) models and find that these high abundances can be reproduced for the inner Galaxy conditions. It is remarkable that the range of predicted N(CH+)/ N(HCO+) ratios, from 1 to similar to 50, is comparable to that observed.
  •  
7.
  • Neufeld, D. A., et al. (författare)
  • Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N: a probe of diffuse clouds with a small molecular fraction
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L10-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of absorption by interstellar hydroxyl cations and water cations, along the sight-line to the bright continuum source W49N. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 972 GHz N = 1-0 transition of OH+ and the 1115 GHz 1(11)-0(00) transition of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong absorption by OH+, in foreground material at velocities in the range 0 to 70 km s(-1) with respect to the local standard of rest. The inferred OH+/H2O+ abundance ratio ranges from similar to 3 to similar to 15, implying that the observed OH+ arises in clouds of small molecular fraction, in the 2-8% range. This conclusion is confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which is similar to that of atomic hydrogen, as observed by means of 21 cm absorption measurements, and dissimilar from that typical of other molecular tracers. The observed OH+/H abundance ratio of a few x10(-8) suggests a cosmic ray ionization rate for atomic hydrogen of 0.6-2.4 x 10(-16) s(-1), in good agreement with estimates inferred previously for diffuse clouds in the Galactic disk from observations of interstellar H-3(+) and other species.
  •  
8.
  • Ueta, T., et al. (författare)
  • Herschel Planetary Nebula Survey (HerPlaNS)
  • 2014
  • Ingår i: Asymmetrical Planetary Nebulae VI conference, Proceedings of the conference held 4-8 November, 2013. ; , s. 106-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The Herschel Planetary Nebula Survey (HerPlaNS) is one of the largest Open Time programs carried out by the Herschel Space Observatory, by which we simultaneously probe the dust and gas components of the circumstellar environments of evolved stars. HerPlaNS is part of a community-wide panchromatic (from X-ray to Radio) observational initiative to furnish substantial PN data resources that would allow us - PN astronomers - to tackle a multitude of issues in PN physics. In this contribution we will give a general overview of the survey and a glimpse of what the data can tell us using NGC 6781 as an example.
  •  
9.
  • Ueta, T., et al. (författare)
  • The Herschel Planetary Nebula Survey (HerPlaNS) I. Data overview and analysis demonstration with NGC 6781
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 565, s. A36-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. This is the first of a series of investigations into far-IR characteristics of 11 planetary nebulae (PNe) under the Herschel Space Observatory open time 1 program, Herschel Planetary Nebula Survey (HerPlaNS). Aims. Using the HerPlaNS data set, we look into the PN energetics and variations of the physical conditions within the target nebulae. In the present work, we provide an overview of the survey, data acquisition and processing, and resulting data products. Methods. We performed (1) PACS/SPIRE broadband imaging to determine the spatial distribution of the cold dust component in the target PNe and (2) PACS/SPIRE spectral-energy-distribution and line spectroscopy to determine the spatial distribution of the gas component in the target PNe. Results. For the case of NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbon-rich dust shell and the surrounding halo having temperatures of 26-40 K. The PACS/SPIRE multiposition spectra show spatial variations of far-.IR lines that reflect the physical stratification of the nebula. We demonstrate that spatially resolved far-IR line diagnostics yield the (T-e, n(e)) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allows to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 +/- 110. The present analysis yields estimates of the total mass of the shell to be 0.86 M-circle dot, consisting of 0.54 M-circle dot of ionized gas, 0.12 M-circle dot of atomic gas, 0.2 M-circle dot of molecular gas, and 4 x 10(-3) M-circle dot of dust grains. These estimates' also suggest that the central star of about 1.5 M-circle dot initial mass is terminating its PN evolution onto the white dwarf cooling track. Conclusions. The HerPlaNS data provide various diagnostics for both the dust and gas components in a spatially resolved manner. In the forthcoming papers of the HerPlaNS series we will explore the HerPlaNS data set fully for the entire sample of 11 PNe.
  •  
10.
  • Ueta, T., et al. (författare)
  • Planetary Nebula dust haloes revealed by Herschel
  • 2013
  • Ingår i: Proceedings of Science. - Trieste, Italy : Sissa Medialab. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • Herschel Planetary Nebula Survey (HerPlaNS) is a far-IR imaging and spectroscopic survey of planetary nebulae, performedwith the Herschel Space Observatory, aiming at (1) establishing the spatially-resolved far-IR characteristics of the target nebulae and (2) understanding the energetics and shaping history of the circumstellar nebulae. Below we briefly demonstrate the breadth and depth of the HerPlaNS data set using one of the targets, NGC6781, as an example, and explore expectations in the era of SPICA, the next-generation far-IR mission.
  •  
11.
  • Aleman, I., et al. (författare)
  • Herschel Planetary Nebula Survey (HerPlaNS) First detection of OH+ in planetary nebulae
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 566
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We report the first detections of OH+ emission in planetary nebulae (PNe). Methods. As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51 mu m and 672 mu m to look for new detections. Results. The rotational emission lines of OH+ at 152.99, 290.20, 308.48, and 329.77 mu m were detected in the spectra of three planetary nebulae: NGC 6445, NGC6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27-47 K and 2 x 10(10)-4 x 10(11) cm(-2), respectively. Conclusions. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (T-eff > 100 000 K), suggesting that high-energy photons may play a role in OH+ formation and its line excitation in these objects, as seems to be the case for ultraluminous galaxies.
  •  
12.
  • Bujarrabal, V., et al. (författare)
  • Herschel/HIFI observations of high-J CO transitions in the protoplanetary nebula CRL 618
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L3-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to study the physical conditions, particularly the excitation state, of the intermediate-temperature gas components in the protoplanetary nebula CRL 618. These components are particularly important for understanding the evolution of the nebula. Methods. We performed Herschel/HIFI observations of several CO lines in the far-infrared/sub-mm in the protoplanetary nebula CRL 618. The high spectral resolution provided by HIFI allows measurement of the line profiles. Since the dynamics and structure of the nebula is well known from mm-wave interferometric maps, it is possible to identify the contributions of the different nebular components (fast bipolar outflows, double shells, compact slow shell) to the line profiles. The observation of these relatively high-energy transitions allows an accurate study of the excitation conditions in these components, particularly in the warm ones, which cannot be properly studied from the low-energy lines. Results. The (CO)-C-12 J = 16-15, 10-9, and 6-5 lines are easily detected in this source. Both (CO)-C-13 J = 10-9 and 6-5 are also detected. Wide profiles showing spectacular line wings have been found, particularly in (CO)-C-12 J = 16-15. Other lines observed simultaneously with CO are also shown. Our analysis of the CO high-J transitions, when compared with the existing models, confirms the very low expansion velocity of the central, dense component, which probably indicates that the shells ejected during the last AGB phases were driven by radiation pressure under a regime of maximum transfer of momentum. No contribution of the diffuse halo found from mm-wave data is identified in our spectra, because of its low temperature. We find that the fast bipolar outflow is quite hot, much hotter than previously estimated; for instance, gas flowing at 100 km s(-1) must have a temperature higher than similar to 200 K. Probably, this very fast outflow, with a kinematic age
  •  
13.
  • Justtanont, Kay, 1965, et al. (författare)
  • A HIFI preview of warm molecular gas around chi Cygni: first detection of H2O emission toward an S-type AGB star
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L6-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. A set of new, sensitive, and spectrally resolved, sub-millimeter line observations are used to probe the warm circumstellar gas around the S-type AGB star chi Cyg. The observed lines involve high rotational quantum numbers, which, combined with previously obtained lower-frequency data, make it posible to study in detail the chemical and physical properties of, essentially, the entire circumstellar envelope of chi Cyg. Methods. The data were obtained using the HIFI instrument aboard Herschel, whose high spectral resolution provides valuable information about the line profiles. Detailed, non-LTE, radiative transfer modelling, including dust radiative transfer coupled with a dynamical model, has been performed to derive the temperature, density, and velocity structure of the circumstellar envelope. Results. We report the first detection of circumstellar H2O rotational emission lines in an S-star. Using the high-J CO lines to derive the parameters for the circumstellar envelope, we modelled both the ortho-and para-H2O lines. Our modelling results are consistent with the velocity structure expected for a dust-driven wind. The derived total H2O abundance (relative to H-2) is (1.1 +/- 0.2) x 10(-5), much lower than that in O-rich stars. The derived ortho-to-para ratio of 2.1 +/- 0.6 is close to the high-temperature equilibrium limit, consistent with H2O being formed in the photosphere.
  •  
14.
  • Neufeld, D. A., et al. (författare)
  • Discovery of water vapour in the carbon star V Cygni from observations with Herschel/HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L5-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of water vapour toward the carbon star V Cygni. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1(11)-0(00) para-water transition at 1113.3430 GHz in the upper sideband of the Band 4b receiver. The observed spectral line profile is nearly parabolic, but with a slight asymmetry associated with blueshifted absorption, and the integrated antenna temperature is 1.69 +/- 0.17 K km s(-1). This detection of thermal water vapour emission, carried out as part of a small survey of water in carbon-rich stars, is only the second such detection toward a carbon-rich AGB star, the first having been obtained by the Submillimeter Wave Astronomy Satellite toward IRC+ 10216. For an assumed ortho-to-para ratio of 3 for water, the observed line intensity implies a water outflow rate similar to 3-6 x 10(-5) Earth masses per year and a water abundance relative to H-2 of similar to 2-5 x 10(-6). This value is a factor of at least 10(4) larger than the expected photospheric abundance in a carbon-rich environment, and - as in IRC+ 10216 - raises the intriguing possibility that the observed water is produced by the vapourisation of orbiting comets or dwarf planets. However, observations of the single line observed to date do not permit us to place strong constraints upon the spatial distribution or origin of the observed water, but future observations of additional transitions will allow us to determine the inner radius of the H2O-emitting zone, and the H2O ortho-to-para ratio, and thereby to place important constraints upon the origin of the observed water emission.
  •  
15.
  • Wallström, Sofia, 1988, et al. (författare)
  • ALMA Compact Array observations of the Fried Egg nebula: Evidence for large-scale asymmetric mass-loss from the yellow hypergiant IRAS 17163-3907
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597, s. A99, pp. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Yellow hypergiants are rare and represent a fast evolutionary stage of massive evolved stars. That evolutionary phase is characterised by a very intense mass loss, the understanding of which is still very limited. Here we report ALMA Compact Array observations of a 50??-mosaic toward the Fried Egg nebula, around one of the few Galactic yellow hypergiants IRAS 17163-3907. The emission from the 12CO J = 2-1 line, H30? recombination line, and continuum is imaged at a resolution of ~8??, revealing the morphology of the molecular environment around the star. The continuum emission is unresolved and peaks at the position of the star. The radio recombination line H30? shows unresolved emission at the star, with an approximately Gaussian spectrum centered on a velocity of 21 ± 3km s-1 with a width of 57 ± 6km s-1. In contrast, the CO 2-1 emission is complex and decomposes into several components beyond the contamination from interstellar gas in the line of sight. The CO spectrum toward the star is a broad plateau, centered at the systemic velocity of +18 km s-1 and with an expansion velocity of 100 ± 10km s-1. Assuming isotropic and constant mass-loss, we estimate a mass-loss rate of 8 ± 1.5 × 10-5M? yr-1. At a radius of 25?? from the star, we detect CO emission associated with the dust ring previously imaged by Herschel. The kinematics of this ring, however, is not consistent with an expanding shell, but show a velocity gradient of vsys ± 20km s-1. In addition, we find a puzzling bright feature radially connecting the star to the CO ring, at a velocity of +40 km s-1 relative to the star. This spur feature may trace a unidirectional ejection event from the star. Our ACA observations reveal the complex morphology around IRAS 17163 and illustrate the breakthroughs that ALMA will bring to the field of massive stellar evolution.
  •  
16.
  • Bujarrabal, V., et al. (författare)
  • Herschel/HIFI observations of molecular emission in protoplanetary nebulae and young planetary nebulae
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. Article Number: A8-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to study the physical conditions, particularly the excitation state, of the intermediate-temperature gas in protoplanetary nebulae and young planetary nebulae (PPNe, PNe). The information that the observations of the different components deliver is of particular importance for understanding the evolution of these objects. Methods. We performed Herschel/HIFI observations of intermediate-excitation molecular lines in the far-infrared/submillimeter range in a sample of ten nebulae. The high spectral resolution provided by HIFI allows the accurate measurement of the line profiles. The dynamics and evolution of these nebulae are known to result from the presence of several gas components, notably fast bipolar outflows and slow shells (that often are the fossil AGB shells), and the interaction between them. Because of the diverse kinematic properties of the different components, their emissions can be identified in the line profiles. The observation of these high-energy transitions allows an accurate study of the excitation conditions, particularly in the warm gas, which cannot be properly studied from the low-energy lines. Results. We have detected FIR/sub-mm lines of several molecules, in particular of (CO)-C-12, (CO)-C-13, and H2O. Emission from other species, like NH3, OH, (H2O)-O-18, HCN, SiO, etc., has been also detected. Wide profiles showing sometimes spectacular line wings have been found. We have mainly studied the excitation properties of the high-velocity emission, which is known to come from fast bipolar outflows. From comparison with general theoretical predictions, we find that CRL 618 shows a particularly warm fast wind, with characteristic kinetic temperature T-k greater than or similar to 200 K. In contrast, the fast winds in OH 231.8+4.2 and NGC 6302 are cold, T-k similar to 30 K. Other nebulae, like CRL 2688, show intermediate temperatures, with characteristic values around 100 K. We also discuss how the complex structure of the nebulae can affect our estimates, considering two-component models. We argue that the differences in temperature in the different nebulae can be caused by cooling after the gas acceleration (that is probably caused by shocks); for instance, CRL 618 is a case of very recent acceleration, less than similar to 100 yr ago, while the fast gas in OH 231.8+4.2 was accelerated similar to 1000 yr ago. We also find indications that the densest gas tends to be cooler, which may be explained by the expected increase of the radiative cooling efficiency with the density.
  •  
17.
  • Decin, L., et al. (författare)
  • Water content and wind acceleration in the envelope around the oxygen-rich AGB star IK Tauri as seen by Herschel/HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L4-
  • Tidskriftsartikel (refereegranskat)abstract
    • During their asymptotic giant branch evolution, low-mass stars lose a significant fraction of their mass through an intense wind, enriching the interstellar medium with products of nucleosynthesis. We observed the nearby oxygen-rich asymptotic giant branch star IK Tau using the high-resolution HIFI spectrometer onboard Herschel. We report on the first detection of (H2O)-O-16 and the rarer isotopologues (H2O)-O-17 and (H2O)-O-18 in both the ortho and para states. We deduce a total water content (relative to molecular hydrogen) of 6.6 x 10(-5), and an ortho-to-para ratio of 3:1. These results are consistent with the formation of H2O in thermodynamical chemical equilibrium at photospheric temperatures, and does not require pulsationally induced non-equilibrium chemistry, vaporization of icy bodies or grain surface reactions. High-excitation lines of (CO)-C-12, (CO)-C-13, (SiO)-Si-28, (SiO)-Si-29, (SiO)-Si-30, HCN, and SO have also been detected. From the observed line widths, the acceleration region in the inner wind zone can be characterized, and we show that the wind acceleration is slower than hitherto anticipated.
  •  
18.
  • Harwit, M., et al. (författare)
  • Polarisation observations of VY Canis Majoris H2O 5(32)-4(41) 620.701 GHz maser emission with HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L51-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims. We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods. In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s(-1), which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut fur Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results. We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings.
  •  
19.
  • Harwit, M., et al. (författare)
  • Polarisation observations of VY Canis Majoris H2O 532-441 620.701 GHz maser emission with HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L51-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims. We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods. In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s(-1), which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut fur Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results. We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings.
  •  
20.
  • Justtanont, Kay, 1965, et al. (författare)
  • Herschel/HIFI observations of O-rich AGB stars: molecular inventory
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. Article Number: A144 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study the dynamical structure, mass-loss driving mechanism, and chemistry of the outflows from AGB stars as a function of chemical composition and initial mass. Methods. We used the HIFI instrument to observe nine AGB stars, mainly in the H2O and high rotational CO lines. We investigate the correlation between line luminosity, line ratio and mass-loss rate, line width and excitation energy. Results. A total of nine different molecules, along with some of their isotopologues have been identified, covering a wide range of excitation temperature. Maser emission is detected in both the ortho-and para-H2O molecules. The line luminosities of ground state lines of ortho- and para-H2O, the high-J CO and NH3 lines show a clear correlation with mass-loss rate. The line ratios of H2O and NH3 relative to CO J = 6-5 correlate with the mass-loss rate while ratios of higher CO lines to the 6-5 is independent of it. In most cases, the expansion velocity derived from the observed line width of highly excited transitions formed relatively close to the stellar photosphere is lower than that of lower excitation transitions, formed farther out, pointing to an accelerated outflow. In some objects, the vibrationally excited H2O and SiO which probe the acceleration zone suggests the wind reaches its terminal velocity already in the innermost part of the envelope, i.e., the acceleration is rapid. Interestingly, for R Dor we find indications of a deceleration of the outflow in the region where the material has already escaped from the star.
  •  
21.
  • Khouri, T., et al. (författare)
  • The wind of W Hydrae as seen by Herschel I. The CO envelope
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 561, s. Article no. A5-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essential for understanding AGB evolution, including the rate of mass loss and isotopic ratios. Aims. We characterize the CO emission from the wind of the low mass-loss rate oxygen-rich AGB star W Hya using data obtained by the HIFI, PACS, and SPIRE instruments on board the Herschel Space Observatory and ground-based telescopes. (CO)-C-12 and (CO)-C-13 lines are used to constrain the intrinsic C-12/C-13 ratio from resolved HIFI lines. Methods. We combined a state-of-the-art molecular line emission code and a dust continuum radiative transfer code to model the CO lines and the thermal dust continuum. Results. The acceleration of the outflow up to about 5.5 km s(-1) is quite slow and can be represented by a beta-type velocity law with index beta = 5. Beyond this point, acceleration up the terminal velocity of 7 km s(-1) is faster. Using the J = 10-9, 9-8, and 6-5 transitions, we find an intrinsic C-12/C-13 ratio of 18 +/- 10 for W Hya, where the error bar is mostly due to uncertainties in the (CO)-C-12 abundance and the stellar flux around 4.6 mu m. To match the low-excitation CO lines, these molecules need to be photo-dissociated at similar to 500 stellar radii. The radial dust emission intensity profile of our stellar wind model matches PACS images at 70 mu m out to 20 '' (or 800 stellar radii). For larger radii the observed emission is substantially stronger than our model predicts, indicating that at these locations there is extra material present. Conclusions. The initial slow acceleration of the wind may imply inefficient dust formation or dust driving in the lower part of the envelope. The final injection of momentum in the wind might be the result of an increase in the opacity thanks to the late condensation of dust species. The derived intrinsic isotopologue ratio for W Hya is consistent with values set by the first dredge-up and suggestive of an initial mass of 2 M-circle dot or more. However, the uncertainty in the isotopologic ratio is large, which makes it difficult to set reliable limits on W Hya's main-sequence mass.
  •  
22.
  • Khouri, T., et al. (författare)
  • The wind of W Hydrae as seen by Herschel II. The molecular envelope of W Hydrae
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. Art. no. A67-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The evolution of low- and intermediate-mass stars on the asymptotic giant branch (AGB) is mainly controlled by the rate at which these stars lose mass in a stellar wind. Understanding the driving mechanism and strength of the stellar winds of AGB stars and the processes enriching their surfaces with products of nucleosynthesis are paramount to constraining AGB evolution and predicting the chemical evolution of galaxies. Aims. In a previous paper we have constrained the structure of the outflowing envelope of W Hya using spectral lines of the (CO)-C-12 molecule. Here we broaden this study by including an extensive set of H2O and (SiO)-Si-28 lines. It is the first time such a comprehensive study is performed for this source. The oxygen isotopic ratios and the (SiO)-Si-28 abundance profile can be connected to the initial stellar mass and to crucial aspects of dust formation at the base of the stellar wind, respectively. Methods. We model the molecular emission observed by the three instruments on board Herschel Space Observatory using a state-of-the-art molecular excitation and radiative transfer code. We also account for the dust radiation field in our calculations. Results. We find an H2O ortho-to-para ratio of 2.5(-1.0)(+2.5), consistent with what is expected for an AGB wind. The O-16/O-17 ratio indicates that W Hya has an initial mass of about 1.5 M-circle dot. Although the ortho-and para-H2O lines observed by HIFI appear to trace gas of slightly different physical properties, we find that a turbulence velocity of 0.7 +/- 0.1 km s(-1) fits the HIFI lines of both spin isomers and those of (SiO)-Si-28 well. Conclusions. The modelling of H2O and (SiO)-Si-28 confirms the properties of the envelope model of W Hya, as derived from (CO)-C-12 lines, and allows us to constrain the turbulence velocity. The ortho-and para-(H2O)-O-16 and (SiO)-Si-28 abundances relative to H-2 are (6(2)(+3)) x 10(-4), (3(-1)(+2)) x 10(-4), and (3.3 +/- 0.8) x 10(-5), respectively, in agreement with expectations for oxygen-rich AGB outflows. Assuming a solar silicon-to-carbon ratio, the (SiO)-Si-28 line emission model is consistent with about one-third of the silicon atoms being locked up in dust particles.
  •  
23.
  • Koumpia, E., et al. (författare)
  • Optical and near-infrared observations of the Fried Egg Nebula: Multiple shell ejections on a 100 yr timescale from a massive yellow hypergiant
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The fate of a massive star during the latest stages of its evolution is highly dependent on its mass-loss rate and geometry and therefore knowing the geometry of the circumstellar material close to the star and its surroundings is crucial. Aims. We aim to provide insight into the nature (i.e. geometry, rates) of mass-loss episodes, and in particular, the connection between the observed asymmetries due to the mass lost in a fast wind or during a previous, prodigious mass-losing phase. In this context, yellow hypergiants offer a good opportunity to study mass-loss events. Methods. We analysed a large set of optical and near-infrared data in spectroscopic and photometric, spectropolarimetric, and interferometric (GRAVITY/VLTI) modes, towards the yellow hypergiant IRAS 17163-3907. We used X-shooter optical observations to determine the spectral type of this yellow hypergiant and we present the first model-independent, reconstructed images of IRAS 17163-3907 at these wavelengths tracing milli-Arcsecond scales. Lastly, we applied a 2D radiative transfer model to fit the dereddened photometry and the radial profiles of published diffraction-limited VISIR images at 8.59 μm, 11.85 μm, and 12.81 μm simultaneously, adopting a revised distance determination using Gaia Data Release 2 measurements. Results. We constrain the spectral type of IRAS 17163-3907 to be slightly earlier than A6Ia (Teffâ ∼â 8500 K). The interferometric observables around the 2 μm window towards IRAS 17163-3907 show that the Brγ emission appears to be more extended and asymmetric than the Naâ » I and the continuum emission. Interestingly, the spectrum of IRAS 17163-3907 around 2 μm shows Mgâ » II emission that is not previously seen in other objects of its class. In addition, Brγ shows variability in a time interval of four months that is not seen towards Naâ » I. Lastly, in addition to the two known shells surrounding IRAS 17163-3907, we report on the existence of a third hot inner shell with a maximum dynamical age of only 30 yr. Conclusions. The 2 μm continuum originates directly from the star and not from hot dust surrounding the stellar object. The observed spectroscopic variability of Brγ could be a result of variability in the mass-loss rate. The interpretation of the presence of Naâ » I emission at closer distances to the star compared to Brγ has been a challenge in various studies. To address this, we examine several scenarios. We argue that the presence of a pseudo-photosphere, which was traditionally considered to be the prominent explanation, is not needed and that it is rather an optical depth effect. The three observed distinct mass-loss episodes are characterised by different mass-loss rates and can inform theories of mass-loss mechanisms, which is a topic still under debate both in theory and observations. We discuss these in the context of photospheric pulsations and wind bi-stability mechanisms.
  •  
24.
  • Schmidt, M. R., et al. (författare)
  • Herschel/HIFI observations of the circumstellar ammonia lines in IRC+10216
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A discrepancy exists between the abundance of ammonia (NH3) derived previously for the circumstellar envelope (CSE) of IRC+10216 from far-IR submillimeter rotational lines and that inferred from radio inversion or mid-infrared (MIR) absorption transitions. Aims. To address the discrepancy described above, new high-resolution far-infrared (FIR) observations of both ortho-and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. Methods. We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J = 3 level (three ortho-and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. The computed emission line profiles are compared with the new HIFI data, the radio inversion transitions, and the MIR absorption lines in the nu(2) band taken from the literature. Results. We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8 +/- 0.5) x 10(-8) for ortho-NH3 and (3.2(-0.6)(+0.7)) x 10(-8) for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1 sigma confidence level).
  •  
25.
  • Teyssier, D., et al. (författare)
  • Herschel/HIFI observations of red supergiants and yellow hypergiants I. Molecular inventory
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. A99 (article no.)-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Red supergiant stars (RSGs) and yellow hypergiant stars (YHGs) are believed to be the high-mass counterparts of stars in the asymptotic giant branch (AGB) and early post-AGB phases. As such, they are scarcer and the properties and evolution of their envelopes are still poorly understood. Aims. We study the mass-loss in the post main-sequence evolution of massive stars, through the properties of their envelopes in the intermediate and warm gas layers. These are the regions where the acceleration of the gas takes place and the most recent mass-loss episodes can be seen. Methods. We used the HIFI instrument on-board the Herschel Space Observatory to observe sub-millimetre and far-infrared (FIR) transitions of CO, water, and their isotopologues in a sample of two RSGs (NML Cyg and Betelgeuse) and two YHGs (IRC + 10420 and AFGL 2343) stars. We present an inventory of the detected lines and analyse the information revealed by their spectral profiles. A comparison of the line intensity and shape in various transitions is used to qualitatively derive a picture of the envelope physical structure. On the basis of the results presented in an earlier study, we model the CO and (CO)-C-13 emission in IRC + 10420 and compare it to a set of lines ranging from the millimetre to the FIR. Results. Red supergiants have stronger high-excitation lines than the YHGs, indicating that they harbour dense and hot inner shells contributing to these transitions. Consequently, these high-J lines in RSGs originate from acceleration layers that have not yet reached the circumstellar terminal velocity and have narrower profiles than their flat-topped lower-J counterparts. The YHGs tend to lack this inner component, in line with the picture of detached, hollow envelopes derived from studies at longer wavelengths. NH3 is only detected in two sources (NML Cyg and IRC + 10420), which are also observed to be the strongest water-line emitters of the studied sample. In contrast, OH is detected in all sources and does not seem to correlate with the water line intensities. We show that the IRC + 10420 model derived solely from millimetre low-J CO transitions is capable of reproducing the high-J transitions when the temperature in the inner shell is simply lowered by about 30%.
  •  
26.
  • Alcolea, J., et al. (författare)
  • HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 559, s. (article nr.) A93-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims.The study of the molecular gas in the circumstellar envelopes of evolved stars is normally undertaken by observing lines ofCO (and other species) in the millimetre-wave domain. In general, the excitation requirements of the observed lines are low at thesewavelengths, and therefore these observations predominantly probe the cold outer envelope while studying the warm inner regions ofthe envelopes normally requires sub-millimetre (sub-mm) and far-infrared (FIR) observational data.Methods.To gain insight into the physical conditions and kinematics of the warm (100–1000 K) gas around the red hyper-giantVY CMa, we performed sensitive high spectral resolution observations of molecular lines in the sub-mm/FIR using the HIFI instru-ment of theHerschelSpace Observatory. We observed CO, H2O, and other molecular species, sampling excitation energies from afew tens to a few thousand K. These observations are part of theHerschelguaranteed time key program HIFISTARS.Results.We detected theJ=6–5,J=10–9, andJ=16–15 lines of12CO and13CO at∼100, 300, and 750 K above the groundstate (and the13COJ=9–8 line). These lines are crucial for improving the modelling of the internal layers of the envelope aroundVY CMa. We also detected 27 lines of H2O and its isotopomers, and 96 lines of species such as NH3,SiO,SO,SO2HCN, OH andothers, some of them originating from vibrationally excited levels. Three lines were not unambiguously assigned.Conclusions.Our observations confirm that VY CMa’s envelope must consist of two or more detached components. The molecularexcitation in the outer layers is significantly lower than in the inner ones, resulting in strong self-absorbed profiles in molecular linesthat are optically thick in this outer envelope, for instance, low-lying lines of H2O. Except for the most abundant species, CO and H2O,most of the molecular emission detected at these sub-mm/FIR wavelengths arise from the central parts of the envelope. The spectrumof VY CMa is very prominent in vibrationally excited lines, which are caused by the strong IR pumping present in the central regions.Compared with envelopes of other massive evolved stars, VY CMa’s emission is particularly strong in these vibrationally excitedlines, as well as in the emission from less abundant species such as H13CN, SO, and NH3.
  •  
27.
  • Bender, P., et al. (författare)
  • Dipolar-coupled moment correlations in clusters of magnetic nanoparticles
  • 2018
  • Ingår i: Physical Review B. - 2469-9950 .- 2469-9969. ; 98:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we resolve the nature of the moment coupling between 10-nm dimercaptosuccinic acid-coated magnetic nanoparticles. The individual iron oxide cores were composed of >95% maghemite and agglomerated to clusters. At room temperature the ensemble behaved as a superparamagnet according to Mössbauer and magnetization measurements, however, with clear signs of dipolar interactions. Analysis of temperature-dependent ac susceptibility data in the superparamagnetic regime indicates a tendency for dipolar-coupled anticorrelations of the core moments within the clusters. To resolve the directional correlations between the particle moments we performed polarized small-angle neutron scattering and determined the magnetic spin-flip cross section of the powder in low magnetic field at 300 K. We extract the underlying magnetic correlation function of the magnetization vector field by an indirect Fourier transform of the cross section. The correlation function suggests nonstochastic preferential alignment between neighboring moments despite thermal fluctuations, with anticorrelations clearly dominating for next-nearest moments. These tendencies are confirmed by Monte Carlo simulations of such core clusters.
  •  
28.
  • Bender, P., et al. (författare)
  • Distribution functions of magnetic nanoparticles determined by a numerical inversion method
  • 2017
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 19:7
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we applied a regularized inversion method to extract the particle size, magnetic moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements the particles were colloidally dispersed in water. At first approximation the particles could be assumed to be spherically shaped and homogeneously magnetized single-domain particles. As model functions for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis of these peaks enabled, in combination with a prior characterization of the particle ensemble by electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization of the particles. Additionally, all three extracted distributions featured peaks, which indicated deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins (DCM) and/or intra-well relaxation processes (ACS). The main advantage of the numerical inversion method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions are required, which enabled the detection of these contributions. We highlighted this by comparing the results with the results obtained by standard model fits, where the functional form of the distributions was a priori assumed to be log-normal shaped.
  •  
29.
  • Bender, P., et al. (författare)
  • Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles
  • 2018
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 29:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Clustering of magnetic nanoparticles can drastically change their collective magnetic properties, which in turn may influence their performance in technological or biomedical applications. Here, we investigate a commercial colloidal dispersion (FeraSpin™R), which contains dense clusters of iron oxide cores (mean size around 9 nm according to neutron diffraction) with varying cluster size (about 18-56 nm according to small angle x-ray diffraction), and its individual size fractions (FeraSpin™XS, S, M, L, XL, XXL). The magnetic properties of the colloids were characterized by isothermal magnetization, as well as frequency-dependent optomagnetic and AC susceptibility measurements. From these measurements we derive the underlying moment and relaxation frequency distributions, respectively. Analysis of the distributions shows that the clustering of the initially superparamagnetic cores leads to remanent magnetic moments within the large clusters. At frequencies below 105 rad s-1, the relaxation of the clusters is dominated by Brownian (rotation) relaxation. At higher frequencies, where Brownian relaxation is inhibited due to viscous friction, the clusters still show an appreciable magnetic relaxation due to internal moment relaxation within the clusters. As a result of the internal moment relaxation, the colloids with the large clusters (FS-L, XL, XXL) excel in magnetic hyperthermia experiments.
  •  
30.
  • Ceccarelli, C., et al. (författare)
  • Herschel spectral surveys of star- forming regions Overview of the 555-636 GHz range
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L22-
  • Tidskriftsartikel (refereegranskat)abstract
    • High resolution line spectra of star-forming regions are mines of information: they provide unique clues to reconstruct the chemical, dynamical, and physical structure of the observed source. We present the first results from the Herschel key project " Chemical HErschel Surveys of Star forming regions", CHESS. We report and discuss observations towards five CHESS targets, one outflow shock spot and four protostars with luminosities bewteen 20 and 2 x 105 L similar to : L1157-B1, IRAS 16293-2422, OMC2-FIR4, AFGL 2591, and NGC 6334I. The observations were obtained with the heterodyne spectrometer HIFI on board Herschel, with a spectral resolution of 1 MHz. They cover the frequency range 555-636 GHz, a range largely unexplored before the launch of the Herschel satellite. A comparison of the five spectra highlights spectacular differences in the five sources, for example in the density of methanol lines, or the presence./absence of lines from S-bearing molecules or deuterated species. We discuss how these differences can be attributed to the different star-forming mass or evolutionary status.
  •  
31.
  • Menten, K. M., et al. (författare)
  • Herschel/HIFI deepens the circumstellar NH3 enigma
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L7-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Circumstellar envelopes (CSEs) of a variety of evolved stars have been found to contain ammonia (NH3) in amounts that exceed predictions from conventional chemical models by many orders of magnitude. Aims. The observations reported here were performed in order to better constrain the NH3 abundance in the CSEs of four, quite diverse, oxygen-rich stars using the NH3 ortho J(K) = 1(0)-0(0) ground-state line. Methods. We used the Heterodyne Instrument for the Far Infrared aboard Herschel to observe the NH3 J(K) = 1(0)-0(0) transition near 572.5 GHz, simultaneously with the ortho-H2O J(Ka,Kc) = 1(1,0)-1(0,1) transition, toward VY CMa, OH 26.5+0.6, IRC+10420, and IK Tau. We conducted non-LTE radiative transfer modeling with the goal to derive the NH3 abundance in these objects' CSEs. For the last two stars, Very Large Array imaging of NH3 radio-wavelength inversion lines were used to provide further constraints, particularly on the spatial extent of the NH3-emitting regions. Results. We find remarkably strong NH3 emission in all of our objects with the NH3 line intensities rivaling those of the ground state H2O line. The NH3 abundances relative to H-2 are very high and range from 2 x 10(-7) to 3 x 10(-6) for the objects we have studied. Conclusions. Our observations confirm and even deepen the circumstellar NH3 enigma. While our radiative transfer modeling does not yield satisfactory fits to the observed line profiles, it does lead to abundance estimates that confirm the very high values found in earlier studies. New ways to tackle this mystery will include further Herschel observations of more NH3 lines and imaging with the Expanded Very Large Array.
  •  
32.
  • Neufeld, D. A., et al. (författare)
  • Herschel/HIFI Observations of IRC+10216: Water Vapor in the Inner Envelope of a Carbon-Rich Asymptotic Giant Branch Star
  • 2011
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 727:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (
  •  
33.
  • Neufeld, D. A., et al. (författare)
  • The Widespread Occurrence of Water Vapor in the Circumstellar Envelopes of Carbon-Rich Asymptotic Giant Branch Stars: First Results From a Survey With Herschel/HIFI
  • 2011
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 727:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the preliminary results of a survey for water vapor in a sample of eight C stars with large mid-IR continuum fluxes: V384 Per, CIT 6, V Hya, Y CVn, IRAS 15194-5115, V Cyg, S Cep, and IRC+40540. This survey, performed using the HIFI instrument on board the Herschel Space Observatory, entailed observations of the lowest transitions of both ortho-and para-water: the 556.936 GHz 1(10)-1(01) and 1113.343 GHz 1(11)-0(00) transitions, respectively. Water vapor was unequivocally detected in all eight of the target stars. Prior to this survey, IRC+10216 was the only carbon-rich asymptotic giant branch (AGB) star from which thermal water emissions had been discovered, in that case with the use of the Submillimeter Wave Astronomy Satellite (SWAS). Our results indicate that IRC+10216 is not unusual, except insofar as its proximity to Earth leads to a large line flux that was detectable with SWAS. The water spectral line widths are typically similar to those of CO rotational lines, arguing against the vaporization of a Kuiper Belt analog being the general explanation for water vapor in carbon-rich AGB stars. There is no apparent correlation between the ratio of the integrated water line fluxes to the 6.3 mu m continuum flux-a ratio which measures the water outflow rate-and the total mass-loss rate for the stars in our sample.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-33 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy