SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tabrizi Sarah J.) "

Sökning: WFRF:(Tabrizi Sarah J.)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johnson, Eileanoir B, et al. (författare)
  • Neurofilament light protein in blood predicts regional atrophy in Huntington disease.
  • 2018
  • Ingår i: Neurology. - 1526-632X. ; 90:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilament light (NfL) protein in blood plasma has been proposed as a prognostic biomarker of neurodegeneration in a number of conditions, including Huntington disease (HD). This study investigates the regional distribution of NfL-associated neural pathology in HD gene expansion carriers.We examined associations between NfL measured in plasma and regionally specific atrophy in cross-sectional (n = 198) and longitudinal (n = 177) data in HD gene expansion carriers from the international multisite TRACK-HD study. Using voxel-based morphometry, we measured associations between baseline NfL levels and both baseline gray matter and white matter volume; and longitudinal change in gray matter and white matter over the subsequent 3 years in HD gene expansion carriers.After controlling for demographics, associations between increased NfL levels and reduced brain volume were seen in cortical and subcortical gray matter and within the white matter. After also controlling for known predictors of disease progression (age and CAG repeat length), associations were limited to the caudate and putamen. Longitudinally, NfL predicted subsequent occipital gray matter atrophy and widespread white matter reduction, both before and after correction for other predictors of disease progression.These findings highlight the value of NfL as a dynamic marker of brain atrophy and, more generally, provide further evidence of the strong association between plasma NfL level, a candidate blood biomarker, and pathologic neuronal change.
  •  
2.
  • Kwan, Wanda, et al. (författare)
  • Bone Marrow Transplantation Confers Modest Benefits in Mouse Models of Huntington's Disease.
  • 2012
  • Ingår i: The Journal of Neuroscience : the official journal of the Society for Neuroscience. - 1529-2401. ; 32:1, s. 133-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is caused by an expanded polyglutamine tract in the protein huntingtin (htt). Although HD has historically been viewed as a brain-specific disease, htt is expressed ubiquitously, and recent studies indicate that mutant htt might cause changes to the immune system that could contribute to pathogenesis. Monocytes from HD patients and mouse models are hyperactive in response to stimulation, and increased levels of inflammatory cytokines and chemokines are found in pre-manifest patients that correlate with pathogenesis. In this study, wild-type (WT) bone marrow cells were transplanted into two lethally irradiated transgenic mouse models of HD that ubiquitously express full-length htt (YAC128 and BACHD mice). Bone marrow transplantation partially attenuated hypokinetic and motor deficits in HD mice. Increased levels of synapses in the cortex were found in HD mice that received bone marrow transplants. Importantly, serum levels of interleukin-6, interleukin-10, CXC chemokine ligand 1, and interferon-γ were significantly higher in HD than WT mice but were normalized in mice that received a bone marrow transplant. These results suggest that immune cell dysfunction might be an important modifier of pathogenesis in HD.
  •  
3.
  • Björkqvist, Maria, et al. (författare)
  • A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease.
  • 2008
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 205, s. 1869-1877
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by both neurological and systemic abnormalities. We examined the peripheral immune system and found widespread evidence of innate immune activation detectable in plasma throughout the course of HD. Interleukin 6 levels were increased in HD gene carriers with a mean of 16 years before the predicted onset of clinical symptoms. To our knowledge, this is the earliest plasma abnormality identified in HD. Monocytes from HD subjects expressed mutant huntingtin and were pathologically hyperactive in response to stimulation, suggesting that the mutant protein triggers a cell-autonomous immune activation. A similar pattern was seen in macrophages and microglia from HD mouse models, and the cerebrospinal fluid and striatum of HD patients exhibited abnormal immune activation, suggesting that immune dysfunction plays a role in brain pathology. Collectively, our data suggest parallel central nervous system and peripheral pathogenic pathways of immune activation in HD.
  •  
4.
  • Björkqvist, Maria, et al. (författare)
  • Harnessing immune alterations in neurodegenerative diseases.
  • 2009
  • Ingår i: Neuron. - : Elsevier BV. - 0896-6273. ; 64:1, s. 21-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune dysfunction, a well-established feature of neuroinflammatory disease, is increasingly recognized in neurodegenerative conditions. Its role is emerging as an early and active participant in neuropathology. Inflammation could be modified, with disease-slowing effects, by targeted interventions; it is also readily detectable and could serve as a source of valuable biomarkers.
  •  
5.
  • Dalrymple, Annette, et al. (författare)
  • Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates
  • 2007
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 6:7, s. 2833-2840
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) causes widespread CNS changes and systemic abnormalities including endocrine and immune dysfunction. HD biomarkers are needed to power clinical trials of potential treatments. We used multiplatform proteomic profiling to reveal plasma changes with HD progression. Proteins of interest were evaluated using immunoblotting and ELISA in plasma from 2 populations, CSF and R6/2 mice. The identified proteins demonstrate neuroinflammation in HD and warrant further investigation as possible biomarkers.
  •  
6.
  • Wild, Edward, et al. (författare)
  • Abnormal peripheral chemokine profile in Huntington's disease.
  • 2011
  • Ingår i: PLoS Currents. - 2157-3999. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by both neurological and systemic abnormalities. Immune activation is a well-established feature of the HD brain and we have previously demonstrated a widespread, progressive innate immune response detectable in plasma throughout the course of HD. In the present work we used multiplex ELISA to quantify levels of chemokines in plasma from controls and subjects at different stages of HD. We found an altered chemokine profile tracking with disease progression, with significant elevations of five chemokines (eotaxin-3, MIP-1β, eotaxin, MCP-1 and MCP-4) while three (eotaxin-3, MIP-1β and eotaxin) showed significant linear increases across advancing disease stages. We validated our results in a separate sample cohort including subjects at different stages of HD. Here we saw that chemokine levels (MCP-1 and eotaxin) correlated with clinical scores. We conclude that, like cytokines, chemokines may be linked to the pathogenesis of HD, and that immune molecules may be valuable in tracking and exploring the pathogenesis of HD.
  •  
7.
  • Wild, Edward J, et al. (författare)
  • Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington's disease patients.
  • 2015
  • Ingår i: The Journal of clinical investigation. - 1558-8238. ; 125:5, s. 1979-1986
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantification of disease-associated proteins in the cerebrospinal fluid (CSF) has been critical for the study and treatment of several neurodegenerative disorders; however, mutant huntingtin protein (mHTT), the cause of Huntington's disease (HD), is at very low levels in CSF and, to our knowledge, has never been measured previously.
  •  
8.
  • Gaughwin, Philip, et al. (författare)
  • Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington's disease
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:11, s. 2225-2237
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is a devastating, neurodegenerative condition, which lacks effective treatment. Normal Huntingtin (HTT) and mutant Huntingtin (mHTT) are expressed in multiple tissues and can alter transcription of microRNAs (miRs). Importantly, miRs are present in a bio-stable form in human peripheral blood plasma and have recently been shown to be useful biomarkers in other diseases. We therefore sought to identify potential miR biomarkers of HD that are present in, and have functional consequences for, neuronal and non-neuronal tissues. In a cell line over-expressing mHTT-Exon-1, miR microarray analysis was used to identify candidate miRs. We then examined their presence and bio-stability in control and HD plasma. We found that miR-34b is significantly elevated in response to mHTT-Exon-1, and its blockade alters the toxicity of mHTT-Exon-1 in vitro. We also show that miR-34b is detectable in plasma from small input volumes and is insensitive to freeze-thaw-induced RNA degradation. Interestingly, miR-34b is significantly elevated in plasma from HD gene carriers prior to symptom onset. This is the first study suggesting that plasma miRs might be used as biomarkers for HD.
  •  
9.
  • Gram, Magnus, et al. (författare)
  • Increased levels of hemoglobin and alpha1-microglobulin in Huntington's disease.
  • 2012
  • Ingår i: Frontiers in Bioscience (Elite Edition). - 1945-0508. ; 4, s. 950-957
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemoglobin released from damaged erythrocytes is a major pro-oxidant, generator of free radicals and inflammatory mediator. Huntington's disease is an inherited neurodegenerative disorder characterized by both neurological and systemic abnormalities, in which oxidative stress has been suggested as a possible pathogenic mechanism. In the present work we have investigated levels of hemoglobin and markers of oxidative damage, including the heme- and radical-scavenger alpha1-microglobulin, in plasma and urine samples from two separate sample cohorts, including controls, premanifest gene carriers and subjects at different stages of Huntington's disease. The results show statistically significant increased levels of hemoglobin and alpha1-microglobulin in Huntington's disease urine samples. Interestingly, urine hemoglobin levels correlate with clinical severity. The results suggest that hemolysis may be linked to the pathogenesis of Huntington's disease and that assay of hemoglobin and alpha1-microglobulin may provide biomarkers that are linked to biologically relevant processes.
  •  
10.
  •  
11.
  • McCourt, Andy, et al. (författare)
  • Analysis of White Adipose Tissue Gene Expression Reveals CREB1 Pathway Altered in Huntington's Disease.
  • 2015
  • Ingår i: Journal of Huntington's disease. - 1879-6397. ; 4:4, s. 371-382
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to classical neurological symptoms, Huntington's disease (HD) is complicated by peripheral pathology and both the mutant gene and the protein are found in cells and tissues throughout the body. Despite the adipose tissue gene expression alterations described in HD mouse models, adipose tissue and its gene expression signature have not been previously explored in human HD.
  •  
12.
  • Silajdzic, Edina, et al. (författare)
  • A Critical Evaluation of Inflammatory Markers in Huntington’s Disease Plasma
  • 2013
  • Ingår i: Journal of Huntington's disease. - 1879-6397. ; 2:1, s. 125-134
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Huntington’s Disease (HD) is a hereditary, progressive neurodegenerative disorder characterised by both neurological and systemic symptoms. In HD, immune changes can be observed before the onset of overt clinical features raising the possibility that immune markers in plasma could be used to track disease progression. It has previously been demonstrated that a widespread, progressive innate immune response is detectable in plasma throughout the course of HD. OBJECTIVE: The aim of the present study was to investigate the potential of several components of innate immunity as plasma biomarkers in HD. METHODS: We utilised antibody-based detection technologies as well as mass spectrometric quantification, multiple reaction monitoring (MRM-MS). RESULTS: Levels of several markers previously described as altered in HD, such as clusterin, complement component 4, complement component 9 and α-2 macroglobulin did not differ between healthy controls and HD subjects as measured by Luminex, ELISA or MRM-MS. C-reactive protein was decreased in early HD, while the other immune markers tested were unaltered. CONCLUSIONS: Of the immune markers tested in this study, none showed potential to track with HD disease progression.
  •  
13.
  • Traeger, Ulrike, et al. (författare)
  • HTT-lowering reverses Huntington's disease immune dysfunction caused by NF kappa B pathway dysregulation
  • 2014
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 137, s. 819-833
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington's disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington's disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NF kappa B pathway, whereby it interacts with IKK gamma, leads to increased degradation of I kappa B and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function-the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington's disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington's disease.
  •  
14.
  • Träger, Ulrike, et al. (författare)
  • Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models.
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 73, s. 388-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation is a growing area of research in neurodegeneration. In Huntington's disease (HD), a fatal inherited neurodegenerative disease caused by a CAG-repeat expansion in the gene encoding huntingtin, patients have increased plasma levels of inflammatory cytokines and circulating monocytes that are hyper-responsive to immune stimuli. Several mouse models of HD also show elevated plasma levels of inflammatory cytokines. To further determine the degree to which these models recapitulate observations in HD patients, we evaluated various myeloid cell populations from different HD mouse models to determine whether they are similarly hyper-responsive, as well as measuring other aspects of myeloid cell function. Myeloid cells from each of the three mouse models studied, R6/2, HdhQ150 knock-in and YAC128, showed increased cytokine production when stimulated. However, bone marrow CD11b(+) cells did not show the same hyper-responsive phenotype as spleen and blood cells. Furthermore, macrophages isolated from R6/2 mice show increased levels of phagocytosis, similar to findings in HD patients. Taken together, these results show significant promise for these mouse models to be used to study targeting innate immune pathways identified in human cells, thereby helping to understand the role the peripheral immune system plays in HD progression.
  •  
15.
  • Wood, Nigel I., et al. (författare)
  • Increased thirst and drinking in Huntington's disease and the R6/2 mouse
  • 2008
  • Ingår i: Brain Research Bulletin. - : Elsevier BV. - 0361-9230. ; 76:1-2, s. 70-79
  • Tidskriftsartikel (refereegranskat)abstract
    • While Huntington's disease (HD) is a condition that primarily involves the basal ganglia, there is evidence to suggest that the hypothalamus is also affected. Because the osmoreceptors regulating thirst are situated in the circumventricular region of the hypothalamus, we were interested in whether altered thirst is a part of the HD phenotype. We used the LABORAS behavioural monitoring system and water consumption to show that drinking behaviour was abnormal in R6/2 mice. By 10 weeks of age, R6/2 mice spent significantly more time drinking and drank a greater volume than their wild-type (WT) littermates. The numbers of immunoreactive vasopressin neurons in the paraventricular nucleus (PVN) of the hypothalamus in R6/2 mice were significantly decreased from 8 weeks of age, suggesting that the change in drinking behaviour may be the result of hypothalamic dysfunction. We gave a xerostomia (dry mouth) questionnaire to HD patients and control subjects, and also measured their urine osmolality and serum vasopressin. The mean total xerostomia score was significantly higher in HD patients than in controls, indicating greater thirst in HD patients. Urine osmolality was unaffected in HD patients up to clinical stage 111, and none of the patients had diabetes. However, serum vasopressin was increased, suggesting a dysregulation in the control of hypothalamic vasopressin release. A dry mouth can affect taste, mastication and swallowing, all of which may contribute to the significant weight loss seen in both HD patients and R6/2 mice, as can dehydration. We suggest that increased thirst may be an important and clinically relevant biomarker for the study of disease progression in HD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy