SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tafalla M.) "

Sökning: WFRF:(Tafalla M.)

  • Resultat 1-43 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benz, A. O., et al. (författare)
  • Hydrides in young stellar objects : Radiation tracers in a protostar-disk-outflow system
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L35-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods: W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (≃2500 s) in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J = 1-0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions: The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation. Herschel is an ESA space observatory with science instruments provided by a European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org
  •  
2.
  • van Dishoeck, E. F., et al. (författare)
  • Water in Star-forming Regions with the Herschel Space Observatory (WISH). I. Overview of Key Program and First Results
  • 2011
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 123:900, s. 138-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structures of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted, covering a wide ranee of luminosities-from low ( 10(5) L-circle dot)-and a wide range of evolutionary stages-from cold prestellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, (H2O)-O-18 and chemically related species at the source position and in small maps around the protostars and selected outflow positions. In addition, high-frequency lines of CO, (CO)-C-13, and (CO)-O-18 are obtained with Herschel and are complemented by ground-based observations of dust continuum, HDO, CO and its isotopologs, and other molecules to ensure a self-consistent data set for analysis. An overview of the scientific motivation and observational strategy of the program is given, together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained that have profound implications for our understanding of grain growth and mixing in disks.
  •  
3.
  • Kristensen, L. E., et al. (författare)
  • Water in low-mass star-forming regions with Herschel . HIFI spectroscopy of NGC 1333
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L30-
  • Tidskriftsartikel (refereegranskat)abstract
    • “Water In Star-forming regions with Herschel” (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC 1333 in several H_216O, H_218O, and CO transitions. Line profiles are resolved for five H_216O transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km s-1), medium-broad (~5-10 km s-1), and narrow (<5 km s-1) components. The H_218O emission is only detected in broad 110-101 lines (>20 km s-1), indicating that its physical origin is the same as for the broad H_216O component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (⪉1000 AU) and large scales along the outflow cavity walls (~10 000 AU). The H2O line profiles are compared to CO line profiles to constrain the H2O abundance as a function of velocity within these shocked regions. The H2O/CO abundance ratios are measured to be in the range of ~0.1-1, corresponding to H2O abundances of ~10-5-10-4 with respect to H2. Approximately 5-10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 2 and 3 (page 6) are only available in electronic form at http://www.aanda.org
  •  
4.
  • van Kempen, T. A., et al. (författare)
  • Origin of the hot gas in low-mass protostars Herschel-PACS spectroscopy of HH 46
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L121
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. "Water In Star-forming regions with Herschel" (WISH) is a Herschel key programme aimed at understanding the physical and chemical structure of young stellar objects (YSOs) with a focus on water and related species. Methods. The low-mass protostar HH 46 was observed with the Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory to measure emission in H2O, CO, OH, [O I], and [C II] lines located between 63 and 186 mu m. The excitation and spatial distribution of emission can disentangle the different heating mechanisms of YSOs, with better spatial resolution and sensitivity than previously possible. Results. Far-IR line emission is detected at the position of the protostar and along the outflow axis. The OH emission is concentrated at the central position, CO emission is bright at the central position and along the outflow, and H2O emission is concentrated in the outflow. In addition, [O I] emission is seen in low-velocity gas, assumed to be related to the envelope, and is also seen shifted up to 170 km s(-1) in both the red-and blue-shifted jets. Envelope models are constructed based on previous observational constraints. They indicate that passive heating of a spherical envelope by the protostellar luminosity cannot explain the high-excitation molecular gas detected with PACS, including CO lines with upper levels at >2500 K above the ground state. Instead, warm CO and H2O emission is probably produced in the walls of an outflow-carved cavity in the envelope, which are heated by UV photons and non-dissociative C-type shocks. The bright OH and [O I] emission is attributed to J-type shocks in dense gas close to the protostar. In the scenario described here, the combined cooling by far-IR lines within the central spatial pixel is estimated to be 2 x 10(-2) L-circle dot, with 60-80% attributed to J- and C-type shocks produced by interactions between the jet and the envelope.
  •  
5.
  • Bergin, E. A., et al. (författare)
  • Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L33-
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a sensitive search for the ground-state emission lines of ortho-and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3 sigma levels in 0.5 km s(-1) channels of 4.2 mK for the 1(10)-1(01) line and 12.6 mK for the 1(11)-0(00) line. We report a very tentative detection, however, of the 1(10)-1(01) line in the wide band spectrometer, with a strength of T-mb = 2.7 mK, a width of 5.6 km s(-1) and an integrated intensity of 16.0 mK km s(-1). The latter constitutes a 6 sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane.
  •  
6.
  • Bruderer, S., et al. (författare)
  • Herschel/HIFI detections of hydrides towards AFGL 2591. Envelope emission versus tenuous cloud absorption
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L44-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH+, NH, OH+, H2O+, while NH+ and SH+ have not been detected. All molecules except for CH and CH+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(JF,P = 3/22,- - 1/21,+ ) and CH+(J = 1-0, J = 2-1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH+ emission stems from the envelope. The observed abundance and excitation of CH and CH+ can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Apppendices and Table 1 (pages 6 to 7) are only available in electronic form at http://www.aanda.org
  •  
7.
  • Fich, M., et al. (författare)
  • Herschel-PACS spectroscopy of the intermediate mass protostar NGC 7129 FIRS 2
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L86
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present preliminary results of the first Herschel spectroscopic observations of NGC 7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope. Methods. The PACS instrument was used in line spectroscopy mode ( R = 1000-5000) with 15 spectral bands between 63 and 185 mu m. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II. Results. Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines. Conclusions. It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks.
  •  
8.
  • Nisini, B., et al. (författare)
  • Water cooling of shocks in protostellar outflows. Herschel-PACS map of L1157
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L120-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The far-IR/sub-mm spectral mapping facility provided by the Herschel-PACS and HIFI instruments has made it possible to obtain, for the first time, images of H2O emission with a spatial resolution comparable to ground based mm/sub-mm observations. Aims: In the framework of the Water In Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 μm transition obtained toward the young outflow L1157. Methods: The 179 μm map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the H2O abundance and total cooling. Results: Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 μm emission is spatially correlated with emission from H2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 μm intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10-4. This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total H2O cooling is ~10-1 L_ȯ, about 40% of the cooling due to H2 and 23% of the total energy released in shocks along the L1157 outflow. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important partecipation from NASA.
  •  
9.
  • Wampfler, S. F., et al. (författare)
  • Herschel observations of the hydroxyl radical (OH) in young stellar objects
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L36-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: “Water In Star-forming regions with Herschel” (WISH) is a Herschel key program investigating the water chemistry in young stellar objects (YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and destruction of H2O. High-temperature (T ⪆ 250 K) chemistry connects OH and H2O through the OH + H2 Leftrightarrow H2O + H reactions. Formation of H2O from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the presence of UV photons, OH can be produced from the photo-dissociation of H2O through H2O + γUV Rightarrow OH + H. Methods: High-resolution spectroscopy of the 163.12 μm triplet of OH towards HH 46 and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory. The low- and intermediate-mass protostars HH 46, TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were observed with the Photodetector Array Camera and Spectrometer (PACS) on Herschel in four transitions of OH and two [O i] lines. Results: The OH transitions at 79, 84, 119, and 163 μm and [O i] emission at 63 and 145 μm were detected with PACS towards the class I low-mass YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, though the 119 μm was detected in absorption. With HIFI, the 163.12 μm was not detected from HH 46 and only tentatively detected from NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM ⪆ 11 km s-1) and indicates that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [O i] flux and the bolometric luminosity, as found in our sample. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures despite the different physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices (page 6) are only available in electronic form at http://www.aanda.org
  •  
10.
  • Wyrowski, F., et al. (författare)
  • Variations in H2O+/H2O ratios toward massive star-forming regions
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L34-
  • Tidskriftsartikel (refereegranskat)abstract
    • Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Observatory toward a sample of high-mass star-forming regions to observationally study the relation between H2O and H2O+. Nine out of ten sources show absorption from H2O+ in a range of environments: the molecular clumps surrounding the forming and newly formed massive stars, bright high-velocity outflows associated with the massive protostars, and unrelated low-density clouds along the line of sight. Column densities per velocity component of H2O+ are found in the range of 10(12) to a few 10(13) cm(-2). The highest N(H2O+) column densities are found in the outflows of the sources. The ratios of H2O+/H2O are determined in a range from 0.01 to a few and are found to differ strongly between the observed environments with much lower ratios in the massive (proto) cluster envelopes (0.01-0.1) than in outflows and diffuse clouds. Remarkably, even for source components detected in H2O in emission, H2O+ is still seen in absorption.
  •  
11.
  • Yildiz, U. A., et al. (författare)
  • Herschel/HIFI observations of high-J CO lines in the NGC 1333 low-mass star-forming region
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L40-
  • Tidskriftsartikel (refereegranskat)abstract
    • Herschel/HIFI observations of high-J lines (up to J(u) = 10) of (CO)-C-12, (CO)-C-13 and (CO)-O-18 are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally-resolved HIFI data are complemented by ground-based observations of lower-J CO and isotopologue lines. The (CO)-C-12 10-9 profiles are dominated by broad (FWHM 25-30 km s(-1)) emission. Radiative transfer models are used to constrain the temperature of this shocked gas to 100-200 K. Several CO and (CO)-C-13 line profiles also reveal a medium-broad component (FWHM5-10 km s(-1)), seen prominently in H2O lines. Column densities for both components are presented, providing a reference for determining abundances of other molecules in the same gas. The narrow (CO)-O-18 9-8 lines probe the warmer part of the quiescent envelope. Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars.
  •  
12.
  • Bulut, N., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): III. Unlocking the CS chemistry: The CS+O reaction
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Carbon monosulphide (CS) is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. However, chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. Aims. The CS+O → CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150-400 K, but the extrapolation to lower temperatures is doubtful. Our goal is to calculate the CS+O reaction rate at temperatures <150 K which are prevailing in the interstellar medium. Methods. We performed ab initio calculations to obtain the three lowest potential energy surfaces (PES) of the CS+O system. These PESs are used to study the reaction dynamics, using several methods (classical, quantum, and semiclassical) to eventually calculate the CS + O thermal reaction rates. In order to check the accuracy of our calculations, we compare the results of our theoretical calculations for T ~ 150-400 K with those obtained in the laboratory. Results. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150-400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, below 10-15 cm s-1, which is consistent with the extrapolation of experimental data using the Arrhenius expression. Conclusions. We use the updated chemical network to model the sulfur chemistry in Taurus Molecular Cloud 1 (TMC 1) based on molecular abundances determined from Gas phase Elemental abundances in Molecular CloudS (GEMS) project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate, ζH2, along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.
  •  
13.
  • Caselli, P., et al. (författare)
  • Water vapor toward starless cores : The Herschel view
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L29-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Previous studies by the satellites SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) < 7 × 10-9). We investigate the chemistry of water vapor in starless cores beyond the previous upper limits using the highly improved angular resolution and sensitivity of Herschel and measure the abundance of water vapor during evolutionary stages just preceding star formation. Methods: High spectral resolution observations of the fundamental ortho water (o-H2O) transition (557 GHz) were carried out with the Heterodyne Instrument for the Far Infrared onboard Herschel toward two starless cores: Barnard 68 (hereafter B68), a Bok globule, and LDN 1544 (L1544), a prestellar core embedded in the Taurus molecular cloud complex. Detailed radiative transfer and chemical codes were used to analyze the data. Results: The RMS in the brightness temperature measured for the B68 and L1544 spectra is 2.0 and 2.2 mK, respectively, in a velocity bin of 0.59 km s-1. The continuum level is 3.5 ± 0.2 mK in B68 and 11.4 ± 0.4 mK in L1544. No significant feature is detected in B68 and the 3σ upper limit is consistent with a column density of o-H2O N(o-H2O) < 2.5 × 1013 cm-2, or a fractional abundance x(o-H2O) < 1.3 × 10-9, more than an order of magnitude lower than the SWAS upper limit on this source. The L1544 spectrum shows an absorption feature at a 5σ level from which we obtain the first value of the o-H2O column density ever measured in dark clouds: N(o-H2O) = (8 ± 4) × 1012 cm-2. The corresponding fractional abundance is x(o-H2O) ≃ 5 × 10-9 at radii >7000 AU and ≃2 × 10-10 toward the center. The radiative transfer analysis shows that this is consistent with a x(o-H2O) profile peaking at ≃10-8, 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Conclusions: Herschel has provided the first measurement of water vapor in dark regions. Column densities of o-H2O are low, but prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) appear to be very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds and oxygen chemistry in the earliest stages of star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
14.
  • Chavarria, L., et al. (författare)
  • Water in massive star-forming regions : HIFI observations of W3 IRS5
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L37-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-(H2O)-O-17 1(10)-1(01), p-(H2O)-O-18 1(11)-0(00), p-H2O 2(02)-1(11), p-H2O 1(11)-0(00), o-H2O 2(21)-2(12), and o-H2O 2(12)-1(01) lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 1(11)-0(00) and o-H2O 2(12)-1(01) lines show absorption from the cold material (T similar to 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T greater than or similar to 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10(-4)) is needed to reproduce the o-(H2O)-O-17 1(10)-1(01) and p-(H2O)-O-18 1(11)-0(00) spectra in our models. We estimate water abundances of 10(-8) to 10(-9) in the outer parts of the envelope (T less than or similar to 100 K). The possibility of two protostellar objects contributing to the emission is discussed.
  •  
15.
  • Johnstone, D., et al. (författare)
  • Herschel/HIFI spectroscopy of the intermediate mass protostar NGC7129 FIRS 2
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L41-
  • Tidskriftsartikel (refereegranskat)abstract
    • Herschel/HIFI observations of water from the intermediate mass protostar NGC 7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this star formation environment. Six spectral settings, covering four (H2O)-O-16 and two (H2O)-O-18 lines, were observed and all but one (H2O)-O-18 line were detected. The four (H2O)-O-16 lines discussed here share a similar morphology: a narrower, approximate to 6kms(-1), component centered slightly redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, approximate to 25 km s(-1) component centered blueward and likely associated with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate mass protostar, and the abundance of H2O is constrained to approximate to 10(-7) for the outer envelope. Additionally, the presence of a narrow self-absorption component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the H2O/CO relative abundance is found to be approximate to 0.2, appears to be tracing the same energetic region that produces strong CO emission at high J.
  •  
16.
  • Marseille, M. G., et al. (författare)
  • Water abundances in high-mass protostellar envelopes : Herschel observations with HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L32-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We derive the dense core structure and the water abundance in four massive star-forming regions in the hope of understanding the earliest stages of massive star formation. Methods: We present Herschel/HIFI observations of the para-H2O 111-000 and 202-111 and the para-H_218O 111-000 transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modeled with Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), and the water abundance and the turbulent velocity width as free parameters. Results: While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5×10-10 to 4×10-8 in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel/HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. Conclusions: The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation of NASA.Appendix (pages 6 to 7) is only available in electronic form at http://www.aanda.org
  •  
17.
  • van der Tak, F. F. S., et al. (författare)
  • Water abundance variations around high-mass protostars: HIFI observations of the DR21 region
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L107
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key molecule in the star formation process, but its spatial distribution in star-forming regions is not well known. Aims. We study the distribution of dust continuum and H2O and (CO)-C-13 line emission in DR21, a luminous star-forming region with a powerful outflow and a compact H II region. Methods. Herschel-HIFI spectra near 1100 GHz show narrow (CO)-C-13 10-9 emission and H2O 1(11)-0(00) absorption from the dense core and broad emission from the outflow in both lines. The H2O line also shows absorption by a foreground cloud known from ground-based observations of low-J CO lines. Results. The dust continuum emission is extended over 36 '' FWHM, while the (CO)-C-13 and H2O lines are confined to approximate to 24 '' or less. The foreground absorption appears to peak further North than the other components. Radiative transfer models indicate very low abundances of similar to 2 x 10(-10) for H2O and similar to 8 x 10(-7) for (CO)-C-13 in the dense core, and higher H2O abundances of similar to 4 x 10(-9) in the foreground cloud and similar to 7 x 10(-7) in the outflow. Conclusions. The high H2O abundance in the warm outflow is probably due to the evaporation of water-rich icy grain mantles, while the H2O abundance is kept down by freeze-out in the dense core and by photodissociation in the foreground cloud.
  •  
18.
  • Navarro-Almaida, D., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): II. On the quest for the sulphur reservoir in molecular clouds: the H2S case
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. Aims. Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Methods. Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model NAUTILUS is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. Results. Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when n(H) > 2 x 10(4). This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5-10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. Conclusions. The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.
  •  
19.
  • van Dishoeck, E. F., et al. (författare)
  • Water in star-forming regions: Physics and chemistry from clouds to disks as probed by Herschel spectroscopy
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key molecule in the physics and chemistry of star and planet formation, but it is difficult to observe from Earth. The Herschel Space Observatory provided unprecedented sensitivity as well as spatial and spectral resolution to study water. The Water In Star-forming regions with Herschel (WISH) key program was designed to observe water in a wide range of environments and provide a legacy data set to address its physics and chemistry. Aims. The aim of WISH is to determine which physical components are traced by the gas-phase water lines observed with Herschel and to quantify the excitation conditions and water abundances in each of these components. This then provides insight into how and where the bulk of the water is formed in space and how it is transported from clouds to disks, and ultimately comets and planets. Methods. Data and results from WISH are summarized together with those from related open time programs. WISH targeted ∼80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mass protostars (luminosities from <1 to > 10Lpdbl) and from pre-stellar cores to protoplanetary disks. Lines of H2O and its isotopologs, HDO, OH, CO, and [O I], were observed with the HIFI and PACS instruments, complemented by other chemically-related molecules that are probes of ultraviolet, X-ray, or grain chemistry. The analysis consists of coupling the physical structure of the sources with simple chemical networks and using non-LTE radiative transfer calculations to directly compare models and observations. Results. Most of the far-infrared water emission observed with Herschel in star-forming regions originates from warm outflowing and shocked gas at a high density and temperature (> 10cm-3, 300-1000 K, v ∼ 25 km s-1), heated by kinetic energy dissipation. This gas is not probed by single-dish low-J CO lines, but only by CO lines with Jup > 14. The emission is compact, with at least two different types of velocity components seen. Water is a significant, but not dominant, coolant of warm gas in the earliest protostellar stages. The warm gas water abundance is universally low: orders of magnitude below the H2O/H2 abundance of 4 × 10-4 expected if all volatile oxygen is locked in water. In cold pre-stellar cores and outer protostellar envelopes, the water abundance structure is uniquely probed on scales much smaller than the beam through velocity-resolved line profiles. The inferred gaseous water abundance decreases with depth into the cloud with an enhanced layer at the edge due to photodesorption of water ice. All of these conclusions hold irrespective of protostellar luminosity. For low-mass protostars, a constant gaseous HDO/H2O ratio of ∼0.025 with position into the cold envelope is found. This value is representative of the outermost photodesorbed ice layers and cold gas-phase chemistry, and much higher than that of bulk ice. In contrast, the gas-phase NH3 abundance stays constant as a function of position in low-mass pre- and protostellar cores. Water abundances in the inner hot cores are high, but with variations from 5 × 10-6 to a few × 10-4 for low- and high-mass sources. Water vapor emission from both young and mature disks is weak. Conclusions. The main chemical pathways of water at each of the star-formation stages have been identified and quantified. Low warm water abundances can be explained with shock models that include UV radiation to dissociate water and modify the shock structure. UV fields up to 102-10times the general interstellar radiation field are inferred in the outflow cavity walls on scales of the Herschel beam from various hydrides. Both high temperature chemistry and ice sputtering contribute to the gaseous water abundance at low velocities, with only gas-phase (re-)formation producing water at high velocities. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing. In cold clouds, an elegant solution is that this apparently missing oxygen is locked up in larger μm-sized grains that do not contribute to infrared ice absorption. The fact that even warm outflows and hot cores do not show H2O at full oxygen abundance points to an unidentified refractory component, which is also found in diffuse clouds. The weak water vapor emission from disks indicates that water ice is locked up in larger pebbles early on in the embedded Class I stage and that these pebbles have settled and drifted inward by the Class II stage. Water is transported from clouds to disks mostly as ice, with no evidence for strong accretion shocks. Even at abundances that are somewhat lower than expected, many oceans of water are likely present in planet-forming regions. Based on the lessons for galactic protostars, the low-J H2O line emission (Eup < 300 K) observed in extragalactic sources is inferred to be predominantly collisionally excited and to originate mostly from compact regions of current star formation activity. Recommendations for future mid- to far-infrared missions are made.
  •  
20.
  • Fuente, A., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS) I. The prototypical dark cloud TMC 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • GEMS is an IRAM 30 m Large Program whose aim is determining the elemental depletions and the ionization fraction in a set of prototypical star-forming regions. This paper presents the first results from the prototypical dark cloud Taurus molecular cloud (TMC) 1. Extensive millimeter observations have been carried out with the IRAM 30 m telescope (3 and 2mm) and the 40 m Yebes telescope (1.3 cm and 7 mm) to determine the fractional abundances of CO, HCO+, HCN, CS, SO, HCS+, and N2H+ in three cuts which intersect the dense filament at the well-known positions TMC 1-CP, TMC 1-NH3, and TMC 1-C, covering a visual extinction range from A(v) similar to 3 to similar to 20 mag. Two phases with differentiated chemistry can be distinguished: (i) the translucent envelope with molecular hydrogen densities of 1-5 x 10(3) cm(-3); and (ii) the dense phase, located at A(v) > 10 mag, with molecular hydrogen densities >10(4) cm(-3). Observations and modeling show that the gas phase abundances of C and O progressively decrease along the C+/C/CO transition zone (A(v) similar to 3 mag) where C/H similar to 8 x 10(-5) and C/O similar to 0.8-1, until the beginning of the dense phase at A(v) similar to 10 mag. This is consistent with the grain temperatures being below the CO evaporation temperature in this region. In the case of sulfur, a strong depletion should occur before the translucent phase where we estimate an S/H similar to (0.4-2.2) x 10(-6), an abundance similar to 7-40 times lower than the solar value. A second strong depletion must be present during the formation of the thick icy mantles to achieve the values of S/H measured in the dense cold cores (S/H similar to 8 x 10(-8)). Based on our chemical modeling, we constrain the value of zeta(H2) to similar to(0.5-1.8) x 10(-16) s(-1) in the translucent cloud.
  •  
21.
  • Rodríguez-Baras, M., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): IV. Observational results and statistical trends
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas phase Elemental abundances in Molecular CloudS (GEMS) is an IRAM 30 m Large Program designed to provide estimates of the S, C, N, and O depletions and gas ionization degree, X(e-), in a selected set of star-forming filaments of Taurus, Perseus, and Orion. Our immediate goal is to build up a complete and large database of molecular abundances that can serve as an observational basis for estimating X(e-) and the C, O, N, and S depletions through chemical modeling. We observed and derived the abundances of 14 species (13CO, C18O, HCO+, H13CO+, HC18O+, HCN, H13CN, HNC, HCS+, CS, SO, 34SO, H2S, and OCS) in 244 positions, covering the AV ~3 to ~100 mag, n(H2) ~ a few 103 to 106 cm-3, and Tk ~10 to ~30 K ranges in these clouds, and avoiding protostars, HII regions, and bipolar outflows. A statistical analysis is carried out in order to identify general trends between different species and with physical parameters. Relations between molecules reveal strong linear correlations which define three different families of species: (1) 13CO and C18O isotopologs; (2) H13CO+, HC18O+, H13 CN, and HNC; and (3) the S-bearing molecules. The abundances of the CO isotopologs increase with the gas kinetic temperature until TK ~ 15 K. For higher temperatures, the abundance remains constant with a scatter of a factor of ~3. The abundances of H13 CO+, HC18 O+, H13 CN, and HNC are well correlated with each other, and all of them decrease with molecular hydrogen density, following the law ∝ n(H2)-0.8  ±  0.2. The abundances of S-bearing species also decrease with molecular hydrogen density at a rate of (S-bearing/H)gas ∝ n(H2)-0.6  ±  0.1. The abundances of molecules belonging to groups 2 and 3 do not present any clear trend with gas temperature. At scales of molecular clouds, the C18O abundance is the quantity that better correlates with the cloud mass. We discuss the utility of the 13CO/C18O, HCO+/H13CO+, and H13 CO+/H13CN abundance ratios as chemical diagnostics of star formation in external galaxies.
  •  
22.
  • Benz, A. O., et al. (författare)
  • Water in star-forming regions with Herschel (WISH): VI. Constraints on UV and X-ray irradiation from a survey of hydrides in low- to high-mass young stellar objects
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590, s. Art. no. A105-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydrides are simple compounds containing one or a few hydrogen atoms bonded to a heavier atom. They are fundamental precursor molecules in cosmic chemistry and many hydride ions have become observable in high quality for the first time thanks to the Herschel Space Observatory. Ionized hydrides such as CH+ and OH+ (and also HCO+), which affect the chemistry of molecules such as water, provide complementary information on irradiation by far-UV (FUV) or X-rays and gas temperature. Aims. We explore hydrides of the most abundant heavier elements in an observational survey covering young stellar objects (YSOs) with different mass and evolutionary state. The focus is on hydrides associated with the dense protostellar envelope and outflows, contrary to previous work that focused on hydrides in diffuse foreground clouds. Methods. Twelve YSOs were observed with HIFI on Herschel in six spectral settings providing fully velocity-resolved line profiles as part of the Water in star-forming regions with Herschel (WISH) program. The YSOs include objects of low (Class 0 and I), intermediate, and high mass, with luminosities ranging from 4 L? to 2 × 105 L?. Results. The targeted lines of CH+, OH+, H2O+, C+, and CH are detected mostly in blue-shifted absorption. H3O+ and SH+ are detected in emission and only toward some high-mass objects. The observed line parameters and correlations suggest two different origins related to gas entrained by the outflows and to the circumstellar envelope. The derived column densities correlate with bolometric luminosity and envelope mass for all molecules, best for CH, CH+, and HCO+. The column density ratios of CH+/OH+ are estimated from chemical slab models, assuming that the H2 density is given by the specific density model of each object at the beam radius. For the low-mass YSOs the observed ratio can be reproduced for an FUV flux of 2-400 times the interstellar radiation field (ISRF) at the location of the molecules. In two high-mass objects, the UV flux is 20-200 times the ISRF derived from absorption lines, and 300-600 ISRF using emission lines. Upper limits for the X-ray luminosity can be derived from H3O+ observations for some low-mass objects. Conclusions. If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 L?, is required. There is no molecular evidence for X-ray induced chemistry in the low-mass objects on the observed scales of a few 1000 AU. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar.
  •  
23.
  • van der Tak, F. F. S., et al. (författare)
  • Water in star-forming regions with Herschel (WISH) IV. A survey of low-J H2O line profiles toward high-mass protostars
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 554
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key constituent of star-forming matter, but the origin of its line emission and absorption during high-mass star formation is not well understood. Aims. We study the velocity profiles of low-excitation H2O lines toward 19 high-mass star-forming regions and search for trends with luminosity, mass, and evolutionary stage. Methods. We decompose high-resolution Herschel-HIFI line spectra near 990, 1110 and 1670 GHz into three distinct physical components. Dense cores (protostellar envelopes) are usually seen as narrow absorptions in the H2O 1113 and 1669 GHz ground-state lines, the H2O 987 GHz excited-state line, and the (H2O)-O-18 1102 GHz ground-state line. In a few sources, the envelopes appear in emission in some or all studied lines, indicating higher temperatures or densities. Broader features due to outflows are usually seen in absorption in the H2O 1113 and 1669 GHz lines, in 987 GHz emission, and not seen in (H2O)-O-18, indicating a lower column density and a higher excitation temperature than the envelope component. A few outflows are detected in (H2O)-O-18, indicating higher column densities of shocked gas. In addition, the H2O 1113 and 1669 GHz spectra show narrow absorptions by foreground clouds along the line of sight. The lack of corresponding features in the 987 GHz and (H2O)-O-18 lines indicates a low column density and a low excitation temperature for these clouds, although their derived H2O ortho/para ratios are close to 3. Results. The intensity of the ground state lines of H2O at 1113 and 1669 GHz does not show significant trends with source luminosity, envelope mass, or evolutionary state. In contrast, the flux in the excited-state 987 GHz line appears correlated with luminosity and the (H2O)-O-18 line flux appears correlated with the envelope mass. Furthermore, appearance of the envelope in absorption in the 987 GHz and (H2O)-O-18 lines seems to be a sign of an early evolutionary stage, as probed by the mid-infrared brightness and the L-bol/M-env ratio of the source. Conclusions. The ground state transitions of H2O trace the outer parts of the envelopes, so that the effects of star formation are mostly noticeable in the outflow wings. These lines are heavily affected by absorption, so that line ratios of H2O involving the ground states must be treated with caution, especially if multiple clouds are superposed as in the extragalactic case. The isotopic (H2O)-O-18 line appears to trace the mass of the protostellar envelope, indicating that the average H2O abundance in high-mass protostellar envelopes does not change much with time. The excited state line at 987 GHz increases in flux with luminosity and appears to be a good tracer of the mean weighted dust temperature of the source, which may explain why it is readily seen in distant galaxies.
  •  
24.
  • Bjerkeli, Per, 1977, et al. (författare)
  • H2O line mapping at high spatial and spectral resolution Herschel observations of the VLA 1623 outflow
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 546, s. Article Number: A29 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Apart from being an important coolant, water is known to be a tracer of high-velocity molecular gas. Recent models predict relatively high abundances behind interstellar shockwaves. The dynamical and physical conditions of the water emitting gas, however, are not fully understood yet. Using the Herschel Space Observatory, it is now possible to observe water emission from supersonic molecular outflows at high spectral and spatial resolution. Several molecular outflows from young stars are currently being observed as part of the WISH (Water In Star-forming regions with Herschel) key program. Aims. We aim to determine the abundance and distribution of water, its kinematics, and the physical conditions of the gas responsible for the water emission. The observed line profile shapes help us understand the dynamics in molecular outflows. Methods. We mapped the VLA1623 outflow, in the ground-state transitions of o-H2O, with the HIFI and PACS instruments. We also present observations of higher energy transitions of o-H2O and p-H2O obtained with HIFI and PACS towards selected outflow positions. From comparison with non-LTE radiative transfer calculations, we estimate the physical parameters of the water emitting regions. Results. The observed water emission line profiles vary over the mapped area. Spectral features and components, tracing gas in different excitation conditions, allow us to constrain the density and temperature of the gas. The water emission originates in a region where temperatures are comparable to that of the warm H-2 gas (T greater than or similar to 200 K). Thus, the water emission traces a gas component significantly warmer than the gas responsible for the low-J CO emission. The water column densities at the CO peak positions are low, i.e. N(H2O) similar or equal to (0.03-10) x 10(14) cm(-2). Conclusions. The water abundance with respect to H-2 in the extended outflow is estimated at X(H2O)
  •  
25.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Herschel observations of the Herbig-Haro objects HH52-54
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The emission from Herbig-Haro objects and supersonic molecular outflows is understood as cooling radiation behind shocks, which are initiated by a (proto-)stellar wind or jet. Within a given object, one often observes both dissociative (J-type) and non-dissociative (C-type) shocks, owing to the collective effects of internally varying shock velocities. Aims. We aim at the observational estimation of the relative contribution to the cooling by CO and H(2)O, as this provides decisive information for understanding the oxygen chemistry behind interstellar shock waves. Methods. The high sensitivity of HIFI, in combination with its high spectral resolution capability, allowed us to trace the H(2)O outflow wings at an unprecedented signal-to-noise ratio. From the observation of spectrally resolved H(2)O and CO lines in the HH52-54 system, both from space and from the ground, we arrived at the spatial and velocity distribution of the molecular outflow gas. Solving the statistical equilibrium and non-LTE radiative transfer equations provides us with estimates of the physical parameters of this gas, including the cooling rate ratios of the species. The radiative transfer is based on an accelerated lambda iteration code, where we use the fact that variable shock strengths, distributed along the front, are naturally implied by a curved surface. Results. Based on observations of CO and H(2)O spectral lines, we conclude that the emission is confined to the HH54 region. The quantitative analysis of our observations favours a ratio of the CO-to-H(2)O-cooling-rate >> 1. Formally, we derived the ratio A(CO)/A(o-H(2)O) = 10, which is in good agreement with earlier determination of 7 based on ISO-LWS observations. From the best-fit model to the CO emission, we arrive at an H(2)O abundance close to 1 x 10(-5). The line profiles exhibit two components, one that is triangular and another that is a superposed, additional feature. This additional feature is likely to find its origin in a region that is smaller than the beam where the ortho-water abundance is smaller than in the quiescent gas. Conclusions. Comparison with recent shock models indicate that a planar shock cannot easily explain the observed line strengths and triangular line profiles. We conclude that the geometry can play an important role. Although abundances support a scenario where J-type shocks are present, higher cooling rate ratios are derived than predicted by these types of shocks.
  •  
26.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Resolving the shocked gas in HH54 with Herschel CO line mapping at high spatial and spectral resolution
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 571
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The HH 54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II cloud. Observed CO line profiles are due to a complex distribution in density, temperature, velocity, and geometry. Aims. Resolving the HH 54 shock wave in the far-infrared (FIR) cooling lines of CO constrain the kinematics, morphology, and physical conditions of the shocked region. Methods. We used the PACS and SPIRE instruments on board the Herschel space observatory to map the full FIR spectrum in a region covering the HH 54 shock wave. Complementary Herschel-HIFI, APEX, and Spitzer data are used in the analysis as well. The observed features in the line profiles are reproduced using a 3D radiative transfer model of a bow-shock, constructed with the Line Modeling Engine code (LIME). Results. The FIR emission is confined to the HH 54 region and a coherent displacement of the location of the emission maximum of CO with increasing J is observed. The peak positions of the high-J CO lines are shifted upstream from the lower J CO lines and coincide with the position of the spectral feature identified previously in CO(10-9) profiles with HIFI. This indicates a hotter molecular component in the upstream gas with distinct dynamics. The coherent displacement with increasing J for CO is consistent with a scenario where IRAS12500 - 7658 is the exciting source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K) molecular component located upstream from the apex of the shock and blueshifted by -7 km s(-1). The spatial proximity of this knot to the peaks of the atomic fine-structure emission lines observed with Spitzer and PACS ([O I]63, 145 mu m) suggests that it may be associated with the dissociative shock as the jet impacts slower moving gas in the HH 54 bow-shock.
  •  
27.
  • Karska, A., et al. (författare)
  • Water in star-forming regions with Herschel (WISH) III. Far-infrared cooling lines in low-mass young stellar objects
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Understanding the physical phenomena involved in the earlierst stages of protostellar evolution requires knowledge of the heating and cooling processes that occur in the surroundings of a young stellar object. Spatially resolved information from its constituent gas and dust provides the necessary constraints to distinguish between different theories of accretion energy dissipation into the envelope.Aims. Our aims are to quantify the far-infrared line emission from low-mass protostars and the contribution of different atomic and molecular species to the gas cooling budget, to determine the spatial extent of the emission, and to investigate the underlying excitation conditions. Analysis of the line cooling will help us characterize the evolution of the relevant physical processes as the protostar ages.Methods. Far-infrared Herschel-PACS spectra of 18 low-mass protostars of various luminosities and evolutionary stages are studied in the context of the WISH key program. For most targets, the spectra include many wavelength intervals selected to cover specific CO, H2O, OH, and atomic lines. For four targets the spectra span the entire 55-200 mu m region. The PACS field-of-view covers similar to 47 '' with the resolution of 9.4 ''.Results. Most of the protostars in our sample show strong atomic and molecular far-infrared emission. Water is detected in 17 out of 18 objects (except TMC1A), including 5 Class I sources. The high-excitation H2O 8(18)-7(07) 63.3 mu m line (E-u/k(B) = 1071 K) is detected in 7 sources. CO transitions from J = 14-13 up to J = 49-48 are found and show two distinct temperature components on Boltzmann diagrams with rotational temperatures of similar to 350 K and similar to 700 K. H2O has typical excitation temperatures of similar to 150 K. Emission from both Class 0 and I sources is usually spatially extended along the outflow direction but with a pattern that depends on the species and the transition. In the extended sources, emission is stronger off source and extended on >= 10 000 AU scales; in the compact sample, more than half of the flux originates within 1000 AU of the protostar. The H2O line fluxes correlate strongly with those of the high-J CO lines, both for the full array and for the central position, as well as with the bolometric luminosity and envelope mass. They correlate less strongly with OH fluxes and not with [O I] fluxes. In contrast, [O I] and OH often peak together at the central position.Conclusions. The PACS data probe at least two physical components. The H2O and CO emission very likely arises in non-dissociative (irradiated) shocks along the outflow walls with a range of pre-shock densities. Some OH is also associated with this component, most likely resulting from H2O photodissociation. UV-heated gas contributes only a minor fraction to the CO emission observed by PACS, based on the strong correlation between the shock-dominated CO 24-23 line and the CO 14-13 line. [O I] and some of the OH emission probe dissociative shocks in the inner envelope. The total far-infrared cooling is dominated by H2O and CO, with the fraction contributed by [O I] increasing for Class I sources. Consistent with previous studies, the ratio of total far-infrared line emission over bolometric luminosity decreases with the evolutionary state.
  •  
28.
  • Kristensen, L., et al. (författare)
  • Water in star-forming regions with Herschel (WISH) II. Evolution of 557 GHz 1(10)-1(01) emission in low-mass protostars
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 542
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key tracer of dynamics and chemistry in low-mass star-forming regions, but spectrally resolved observations have so far been limited in sensitivity and angular resolution, and only data from the brightest low-mass protostars have been published. Aims. The first systematic survey of spectrally resolved water emission in 29 low-mass (L 10 km s(-1)). The water abundance in the outer cold envelope is low, greater than or similar to 10(-10). The different H2O profile components show a clear evolutionary trend: in the younger Class 0 sources the emission is dominated by outflow components originating inside an infalling envelope. When large-scale infall diminishes during the Class I phase, the outflow weakens and H2O emission all but disappears.
  •  
29.
  • Mottram, J. C., et al. (författare)
  • Water in star-forming regions with Herschel (WISH)
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 572
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance for the conditions expected in various parts of the protostar, particularly the outflow. Aims. We constrain and quantify the physical conditions probed by water in the outflow-jet system for Class 0 and I sources. Methods. We present velocity-resolved Herschel HIFI spectra of multiple water-transitions observed towards 29 nearby Class 0/I protostars as part of the WISH guaranteed time key programme. The lines are decomposed into different Gaussian components, with each component related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then use non-LTE radex models to constrain the excitation conditions present in the two outflow-related components. Results. Water emission at the source position is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H-2 densities of order 10(5) -10(8) cm(-3) and H2O column densities of order 10(16) -10(18) cm(-2). H2O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200 AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30 AU. Conclusions. Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. The similarity of the physical conditions is in contrast to off-source determinations which show similar densities but lower column densities and larger filling factors. We propose that this is due to the differences in shock properties and geometry between these positions. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H2O intensity between Class 0 and I sources.
  •  
30.
  • Nisini, B., et al. (författare)
  • Mapping water in protostellar outflows with Herschel PACS and HIFI observations of L1448-C
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 549
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key probe of shocks and outflows from young stars because it is extremely sensitive to both the physical conditions associated with the interaction of supersonic outflows with the ambient medium and the chemical processes at play.Aims. Our goal is to investigate the spatial and velocity distribution of H2O along outflows, its relationship with other tracers, and its abundance variations. In particular, this study focuses on the outflow driven by the low-mass protostar L1448-C, which previous observations have shown to be one of the brightest H2O emitters among the class 0 outflows.Methods. To this end, maps of the o-H2O 1(10)-1(01) and 2(12)-1(01) transitions taken with the Herschel-HIFI and PACS instruments, respectively, are presented. For comparison, complementary maps of the CO(3-2) and SiO(8-7) transitions, obtained at the JCMT, and the H-2 S(0) and S(1) transitions, taken from the literature, were used as well. Physical conditions and H2O column densities were inferred using large velocity gradient radiative transfer calculations.Results. The water distribution appears to be clumpy, with individual peaks corresponding to shock spots along the outflow. The bulk of the 557 GHz line is confined to radial velocities in the range +/- 10-50 km s(-1), but extended emission at extreme velocities (up to v(r) similar to 80 km s(-1)) is detected and is associated with the L1448-C extreme high-velocity (EHV) jet. The H2O 1(10)-1(01)/CO(3-2) ratio shows strong variations as a function of velocity that likely reflect different and changing physical conditions in the gas that is responsible for the emissions from the two species. In the EHV jet, a low H2O/SiO abundance ratio is inferred, which could indicate molecular formation from dust-free gas directly ejected from the proto-stellar wind. The ratio between the two observed H2O lines and the comparison with H-2 indicate averaged T-kin and n(H-2) values of similar to 300-500 K and 5 x 10(6) cm(-3), respectively, while a water abundance with respect to H-2 of about 0.5-1x10(-6) along the outflow is estimated, in agreement with results found by previous studies. The fairly constant conditions found all along the outflow imply that evolutionary effects on the timescales of outflow propagation do not play a major role in the H2O chemistry.Conclusions. The results of our analysis show that the bulk of the observed H2O lines comes from post-shocked regions where the gas, after being heated to high temperatures, has already been cooled down to a few hundred K. The relatively low derived abundances, however, call for some mechanism that diminishes the H2O gas in the post-shock region. Among the possible scenarios, we favor H2O photodissociation, which requires the superposition of a low-velocity nondissociative shock with a fast dissociative shock able to produce a far-ultraviolet field of sufficient strength.
  •  
31.
  •  
32.
  •  
33.
  • Santangelo, G., et al. (författare)
  • The Herschel HIFI water line survey in the low-mass proto-stellar outflow L1448
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 538
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. As part of the WISH (Water In Star-forming regions with Herschel) key project, systematic observations of H2O transitions in young outflows are being carried out with the aim of understanding the role of water in shock chemistry and its physical and dynamical properties. We report on the observations of several ortho-and para-H2O lines performed with the HIFI instrument toward two bright shock spots (R4 and B2) along the outflow driven by the L1448 low-mass proto-stellar system, located in the Perseus cloud. These data are used to identify the physical conditions giving rise to the H2O emission and to infer any dependence on velocity. Methods. We used a large velocity gradient (LVG) analysis to derive the main physical parameters of the emitting regions, namely n(H-2), T-kin, N(H2O) and emitting-region size. We compared these with other main shock tracers, such as CO, SiO and H-2 and with shock models available in the literature. Results. These observations provide evidence that the observed water lines probe a warm (T-kin similar to 400-600 K) and very dense (n similar to 10(6)-10(7) cm(-3)) gas that is not traced by other molecules, such as low-J CO and SiO, but is traced by mid-IR H-2 emission. In particular, H2O shows strong differences with SiO in the excitation conditions and in the line profiles in the two observed shocked positions, pointing to chemical variations across the various velocity regimes and chemical evolution in the different shock spots. Physical and kinematical differences can be seen at the two shocked positions. At the R4 position, two velocity components with different excitation can be distinguished, of which the component at higher velocity (R4-HV) is less extended and less dense than the low velocity component (R4-LV). H2O column densities of about 2 x 10(13) and 4 x 10(14) cm(-2) were derived for the R4-LV and the R4-HV components, respectively. The conditions inferred for the B2 position are similar to those of the R4-HV component, with H2O column density in the range 10(14)-5 x 10(14) cm(-2), corresponding to H2O/H-2 abundances in the range 0.5-1 x 10(-5). The observed line ratios and the derived physical conditions seem to be more consistent with excitation in a low-velocity J-type shock with strong compression rather than in a stationary C-shock, although none of these stationary models seems able to reproduce the whole characteristics of the observed emission.
  •  
34.
  • Vasta, M., et al. (författare)
  • Water emission from the chemically rich outflow L1157
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. Article Number: A98 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the framework of the Herschel-WISH key program, several ortho-H2O and para-H2O emission lines, in the frequency range from 500 to 1700 GHz, were observed with the HIFI instrument in two bow-shock regions (B2 and R) of the L1157 cloud, which hosts what is considered to be the prototypical chemically-rich outflow. Aims. Our primary aim is to analyse water emission lines as a diagnostic of the physical conditions in the blue (B2) and red-shifted (R) lobes to compare the excitation conditions. Methods. For this purpose, we ran the non-LTE RADEX model for a plane-parallel geometry to constrain the physical parameters (T-kin, N-H2O and nH(2)) of the water emission lines detected. Results. A total of 5 ortho- and para-(H2O)-O-16 plus one o-(H2O)-O-18 transitions were observed in B2 and R with a wide range of excitation energies (27K = 300 K). The presence of the broad red-shifted wings and multiple peaks in the spectra of the R region, prompted the modelling of two components. High velocities are associated with relatively low temperatures (similar to 100 K), N-H2O similar or equal to 5 x 10(12)-5 x 10(13) cm(-2) and densities nH(2) similar or equal to 10(6)-10(8) cm(-3). Lower velocities are associated with higher excitation conditions with T-kin >= 300 K, very dense gas (nH(2) similar to 10(8) cm(-3)) and low column density (N-H2O = 15 '') region, whilst we cannot rule out the possibility that the emission in R arises from a smaller (>3 '') region. In this context, H2O seems to be important in tracing different gas components with respect to other molecules, e.g. such as SiO, a classical jet tracer. We compare a grid of C-and J-type shocks spanning different velocities (10 to 40 km s(-1)) and two pre-shock densities (2 x 10(4) and 2 x 10(5) cm(-3)), with the observed intensities. Although none of these models seem to be able to reproduce the absolute intensities of the water emissions observed, it appears that the occurrence of J-shocks, which can compress the gas to very high densities, cannot be ruled out in these environments.
  •  
35.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Physical properties of outflows Comparing CO- and H2O-based parameters in Class 0 sources
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The observed physical properties of outflows from low-mass sources put constraints on possible ejection mechanisms. Historically, these quantities have been derived from CO using ground-based observations. It is, therefore, important to investigate whether parameters such as momentum rate (thrust) and mechanical luminosity (power) are the same when different molecular tracers are used.Aims. Our objective is to determine the outflow momentum, dynamical time-scale, thrust, energy, and power using CO and H2O as tracers of outflow activity.Methods. Within the framework of the Water In Star-forming regions with Herschel (WISH) key program, three molecular outflows from Class 0 sources have been mapped using the Heterodyne Instrument for the Far Infrared (HIFI) instrument aboard Herschel. We used these observations together with previously published H-2 data to infer the physical properties of the outflows. We compared the physical properties derived here with previous estimates based on CO observations.Results. Inspection of the spatial distribution of H2O and H-2 confirms that these molecules are co-spatial. The most prominent emission peaks in H-2 coincide with strong H2O emission peaks and the estimated widths of the flows when using the two tracers are comparable.Conclusions. For the momentum rate and the mechanical luminosity, inferred values are not dependent on which tracer is used, i.e. the values agree to within a factor of 4 and 3, respectively.
  •  
36.
  •  
37.
  •  
38.
  • Kristensen, L., et al. (författare)
  • Water in low-mass star-forming regions with Herschel (WISH-LM). High-velocity H2O bullets in L1448-MM observed with HIFI
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531
  • Tidskriftsartikel (refereegranskat)abstract
    • Herschel-HIFI observations of water in the low-mass star-forming object L1448-MM, known for its prominent outflow, are presented, as obtained within the "Water in star-forming regions with Herschel" (WISH) key programme. Six H(2)(16)O lines are targeted and detected (E(up)/k(B) similar to 50-250 K), as is CO J = 10-9 (E(up)/k(B) similar to 305 K), and tentatively H(2)(18)O 1(10)-1(01) at 548 GHz. All lines show strong emission in the "bullets" at vertical bar upsilon vertical bar > 50 km s(-1) from the source velocity, in addition to a broad, central component and narrow absorption. The bullets are seen much more prominently in H(2)O than in CO with respect to the central component, and show little variation with excitation in H(2)O profile shape. Excitation conditions in the bullets derived from CO lines imply a temperature > 150 K and density > 10(5) cm(-3), similar to that of the broad component. The H(2)O/CO abundance ratio is similar in the "bullets" and the broad component, similar to 0.05-1.0, in spite of their different origins in the molecular jet and the interaction between the outflow and the envelope. The high H2O abundance indicates that the bullets are H(2) rich. The H(2)O cooling in the "bullets" and the broad component is similar and higher than the CO cooling in the same components. These data illustrate the power of Herschel-HIFI to disentangle different dynamical components in low-mass star-forming objects and determine their excitation and chemical conditions.
  •  
39.
  • Navarro-Almaida, D., et al. (författare)
  • Evolutionary view through the starless cores in Taurus: Deuteration in TMC 1-C and TMC 1-CP
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The chemical and physical evolution of starless and pre-stellar cores are of paramount importance to understanding the process of star formation. The Taurus Molecular Cloud cores TMC 1-C and TMC 1-CP share similar initial conditions and provide an excellent opportunity to understand the evolution of the pre-stellar core phase. Aims. We investigated the evolutionary stage of starless cores based on observations towards the prototypical dark cores TMC 1-C and TMC 1-CP. Methods. We mapped the prototypical dark cores TMC 1-C and TMC 1-CP in the CS 3 → 2, C34S 3 → 2, 13CS 2 → 1, DCN 1 → 0, DCN 2 → 1, DNC 1 → 0, DNC 2 → 1, DN13C 1 → 0, DN13C 2 → 1, N2H+ 1 → 0, and N2D+ 1 → 0 transitions. We performed a multi-transitional study of CS and its isotopologs, DCN, and DNC lines to characterize the physical and chemical properties of these cores. We studied their chemistry using the state-of-the-art gas-grain chemical code NAUTILUS and pseudo time-dependent models to determine their evolutionary stage. Results. The central nH volume density, the N2H+ column density, and the abundances of deuterated species are higher in TMC 1-C than in TMC 1-CP, yielding a higher N2H+ deuterium fraction in TMC 1-C, thus indicating a later evolutionary stage for TMC 1-C. The chemical modeling with pseudo time-dependent models and their radiative transfer are in agreement with this statement, allowing us to estimate a collapse timescale of ~1 Myr for TMC 1-C. Models with a younger collapse scenario or a collapse slowed down by a magnetic support are found to more closely reproduce the observations towards TMC 1-CP. Conclusions. Observational diagnostics seem to indicate that TMC 1-C is in a later evolutionary stage than TMC 1-CP, with a chemical age ~1 Myr. TMC 1-C shows signs of being an evolved core at the onset of star formation, while TMC 1-CP appears to be in an earlier evolutionary stage due to a more recent formation or, alternatively, a collapse slowed down by a magnetic support.
  •  
40.
  • Santangelo, G., et al. (författare)
  • First spectrally-resolved H-2 observations towards HH 54 Low H2O abundance in shocks
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569, s. Art. no. L8-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Herschel observations suggest that the H2O distribution in outflows from low-mass stars resembles the H-2 emission. It is still unclear which of the different excitation components that characterise the mid-and near-IR H-2 distribution is associated with H2O. Aims. The aim is to spectrally resolve the different excitation components observed in the H-2 emission. This will allow us to identify the H-2 counterpart associated with H2O and finally derive directly an H2O abundance estimate with respect to H-2. Methods. We present new high spectral resolution observations of H-2 0-0 S(4), 0-0 S(9), and 1-0 S(1) towards HH 54, a bright nearby shock region in the southern sky. In addition, new Herschel/HIFI H2O (2(12)-1(01)) observations at 1670 GHz are presented. Results. Our observations show for the first time a clear separation in velocity of the different H-2 lines: the 0-0 S(4) line at the lowest excitation peaks at -7 kms(-1), while the more excited 0-0 S(9) and 1-0 S(1) lines peak at -15 km s(-1). H2O and high-J CO appear to be associated with the H-2 0-0 S(4) emission, which traces a gas component with a temperature of 700-1000 K. The H2O abundance with respect to H-2 0-0 S(4) is estimated to be X(H2O)
  •  
41.
  • Santangelo, G., et al. (författare)
  • Herschel-PACS observations of shocked gas associated with the jets of L1448 and L1157
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 557
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. In the framework of the Water In Star-forming regions with Herschel (WISH) key program, several H2O (E-u > 190 K), high-J CO, [OI], and OH transitions are mapped with Herschel-PACS in two shock positions along two prototypical outflows around the low-luminosity sources L1448 and L1157. Previous Herschel-HIFI H2O observations (E-u = 53-249 K) are also used. The aim is to derive a complete picture of the excitation conditions at the selected shock positions.Methods. We adopted a large velocity gradient analysis (LVG) to derive the physical parameters of the H2O and CO emitting gas. Complementary Spitzer mid-IR H-2 data were used to derive the H2O abundance.Results. Consistent with other studies, at all selected shock spots a close spatial association between H2O, mid-IR H-2, and high-J CO emission is found, whereas the low-J CO emission traces either entrained ambient gas or a remnant of an older shock. The excitation analysis, conducted in detail at the L1448-B2 position, suggests that a two-component model is needed to reproduce the H2O, CO, and mid-IR H-2 lines: an extended warm component (T similar to 450 K) is traced by the H2O emission with E-u = 53-137 K and by the CO lines up to J = 22-21, and a compact hot component (T = 1100 K) is traced by the H2O emission with E-u > 190 K and by the higher-J CO transitions. At L1448-B2 we obtain an H2O abundance (3-4) x 10(-6) for the warm component and (0.3-1.3) x 10(-5) for the hot component and a CO abundance of a few 10-5 in both components. In L1448-B2 we also detect OH and blue-shifted [OI] emission, spatially coincident with the other molecular lines and with [FeII] emission. This suggests a dissociative shock for these species, related to the embedded atomic jet. On the other hand, a non-dissociative shock at the point of impact of the jet on the cloud is responsible for the (HO)-O-2 and CO emission. The other examined shock positions show an H2O excitation similar to L1448-B2, but a slightly higher (HO)-O-2 abundance (a factor of similar to 4).Conclusions. The two gas components may represent a gas stratification in the post-shock region. The extended and low-abundance warm component traces the post-shocked gas that has already cooled down to a few hundred Kelvin, whereas the compact and possibly higher-abundance hot component is associated with the gas that is currently undergoing a shock episode. This hot gas component is more affected by evolutionary effects on the timescales of the outflow propagation, which explains the observed H2O abundance variations.
  •  
42.
  • Santangelo, G., et al. (författare)
  • Water distribution in shocked regions of the NGC 1333-IRAS 4A protostellar outflow
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568, s. Article no. A125-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key molecule in protostellar environments because its line emission is very sensitive to both the chemistry and the physical conditions of the gas. Observations of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observatory have highlighted the complexity of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ line profiles, in which different kinematic components can be distinguished. Aims. The goal is to study the spatial distribution of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ, in particular of the different kinematic components detected in H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ emission, at two bright shocked regions along IRAS 4A, one of the strongest H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ emitters among the Class 0 outflows. Methods. We obtained Herschel-PACS maps of the IRAS 4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38'' at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. A large velocity gradient (LVG) analysis was performed to determine the excitation conditions of the gas. Results. We detect four H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ lines and CO (16-15) at the two selected shocked positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the LVG analysis of the H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ emission suggests that the compact (about 32, corresponding to about 700 AU) component is associated with a hot (T similar to 1000 K) gas with densities n(H2) similar to (1-4) x 10(5) cm(-3), whereas the extended (10 ''-17 '', corresponding to 2400-4000 AU) one traces a warm (T similar to 300-500 K) and dense gas (n(H2) similar to (3-5) x 10(7) cm(-3)). Finally, using the CO (16-15) emission observed at R2 and assuming a typical CO/H-2 abundance of 10(-4), we estimate the H2O/H-2 abundance of the warm and hot components to be (7-10) x 10(-7) and (3-7) x 10(-5). Conclusions. Our data allowed us, for the first time, to resolve spatially the two temperature components previously observed with HIFI and PACS. We propose that the compact hot component may be associated with the jet that impacts the surrounding material, whereas the warm, dense, and extended component originates from the compression of the ambient gas by the propagating flow.
  •  
43.
  • Tafalla, M., et al. (författare)
  • High-pressure, low-abundance water in bipolar outflows Results from a Herschel-WISH survey
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 551
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a potential tracer of outflow activity because it is heavily depleted in cold ambient gas and is copiously produced in shocks. Aims. We present a survey of the water emission in a sample of more than 20 outflows from low-mass young stellar objects with the goal of characterizing the physical and chemical conditions of the emitting gas. Methods. We used the HIFI and PACS instruments on board the Herschel Space Observatory to observe the two fundamental lines of ortho-water at 557 and 1670 GHz. These observations were part of the "Water In Star-forming regions with Herschel" (WISH) key program, and have been complemented with CO and H-2 data. Results. The emission of water has a different spatial and velocity distribution from that of the J = 1-0 and 2-1 transitions of CO. On the other hand, it has a similar spatial distribution to H-2, and its intensity follows the H-2 intensity derived from IRAC images. This suggests that water traces the outflow gas at hundreds of kelvins that is responsible for the H-2 emission, and not the component at tens of kelvins typical of low-J CO emission. A warm origin of the water emission is confirmed by a remarkable correlation between the intensities of the 557 and 1670 GHz lines, which also indicates that the emitting gas has a narrow range of excitations. A radiative transfer analysis shows that while there is some ambiguity in the exact combination of density and temperature values, the gas thermal pressure nT is constrained within less than a factor of 2. The typical nT over the sample is 4x10(9) cm(-3) K, which represents an increase of 10(4) with respect to the ambient value. The data also constrain the water column density within a factor of 2 and indicate values in the sample between 2 x 10(12) and 10(14) cm(-2). When these values are combined with estimates of the H-2 column density, the typical water abundance is only 3 x 10(-7), with an uncertainty of a factor of 3. Conclusions. Our data challenge current C-shock models of water production through the combination of wing-line profiles, high gas compressions, and low abundances.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-43 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy