SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tait Brian D) "

Search: WFRF:(Tait Brian D)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sampson, Joshua N., et al. (author)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Journal article (peer-reviewed)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
2.
  • Berndt, Sonja I., et al. (author)
  • Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P = 2.55 x 10(-11)), 6p25.2 (rs73718779, SERPINB6, P = 1.97 x 10(-8)) and 3q28 (rs9815073, LPP, P = 3.62 x 10(-8)), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P = 1.00 x 10(-11)) in the combined analysis. We find suggestive evidence (P<5 x 10(-7)) for two additional new loci at 4q24 (rs10028805, BANK1, P = 7.19 x 10(-8)) and 3p22.2 (rs1274963, CSRNP1, P = 2.12 x 10(-7)). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility.
  •  
3.
  • Berndt, Sonja, I, et al. (author)
  • Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes
  • 2022
  • In: Leukemia. - : Springer Nature. - 0887-6924 .- 1476-5551. ; 36:12, s. 2835-2844
  • Journal article (peer-reviewed)abstract
    • Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.
  •  
4.
  • Berndt, Sonja I., et al. (author)
  • Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:8, s. 868-U202
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have previously identified 13 loci associated with risk of chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we conducted the largest meta-analysis for CLL thus far, including four GWAS with a total of 3,100 individuals with CLL (cases) and 7,667 controls. In the meta-analysis, we identified ten independent associated SNPs in nine new loci at 10q23.31 (ACTA2 or FAS (ACTA2/FAS), P = 1.22 x 10(-14)), 18q21.33 (BCL2, P = 7.76 x 10(-11)), 11p15.5 (C11orf21, P = 2.15 x 10(-10)), 4q25 (LEF1, P = 4.24 x 10(-10)), 2q33.1 (CASP10 or CASP8 (CASP10/CASP8), P = 2.50 x 10(-9)), 9p21.3 (CDKN2B-AS1, P = 1.27 x 10(-8)), 18q21.32 (PMAIP1, P = 2.51 x 10(-8)), 15q15.1 (BMF, P = 2.71 x 10(-10)) and 2p22.2 (QPCT, P = 1.68 x 10(-8)), as well as an independent signal at an established locus (2q13, ACOXL, P = 2.08 x 10(-18)). We also found evidence for two additional promising loci below genome-wide significance at 8q22.3 (ODF1, P = 5.40 x 10(-8)) and 5p15.33 (TERT, P = 1.92 x 10(-7)). Although further studies are required, the proximity of several of these loci to genes involved in apoptosis suggests a plausible underlying biological mechanism.
  •  
5.
  • Mychaleckyj, Josyf C., et al. (author)
  • HLA genotyping in the international Type 1 Diabetes Genetics Consortium
  • 2010
  • In: Clinical Trials. - : SAGE Publications. - 1740-7753 .- 1740-7745. ; 7:1 suppl., s. 75-87
  • Journal article (peer-reviewed)abstract
    • Background Although human leukocyte antigen (HLA) DQ and DR loci appear to confer the strongest genetic risk for type 1 diabetes, more detailed information is required for other loci within the HLA region to understand causality and stratify additional risk factors. The Type 1 Diabetes Genetics Consortium (T1DGC) study design included high-resolution genotyping of HLA-A, B, C, DRB1, DQ, and DP loci in all affected sibling pair and trio families, and cases and controls, recruited from four networks worldwide, for analysis with clinical phenotypes and immunological markers. Purpose In this article, we present the operational strategy of training, classification, reporting, and quality control of HLA genotyping in four laboratories on three continents over nearly 5 years. Methods Methods to standardize HLA genotyping at eight loci included: central training and initial certification testing; the use of uniform reagents, protocols, instrumentation, and software versions; an automated data transfer; and the use of standardized nomenclature and allele databases. We implemented a rigorous and consistent quality control process, reinforced by repeated workshops, yearly meetings, and telephone conferences. Results A total of 15,246 samples have been HLA genotyped at eight loci to four-digit resolution; an additional 6797 samples have been HLA genotyped at two loci. The genotyping repeat rate decreased significantly over time, with an estimated unresolved Mendelian inconsistency rate of 0.21%. Annual quality control exercises tested 2192 genotypes (4384 alleles) and achieved 99.82% intra-laboratory and 99.68% inter-laboratory concordances. Limitations The chosen genotyping platform was unable to distinguish many allele combinations, which would require further multiple stepwise testing to resolve. For these combinations, a standard allele assignment was agreed upon, allowing further analysis if required. Conclusions High-resolution HLA genotyping can be performed in multiple laboratories using standard equipment, reagents, protocols, software, and communication to produce consistent and reproducible data with minimal systematic error. Many of the strategies used in this study are generally applicable to other large multi-center studies. Clinical Trials 2010; 7: S75-S87. http://ctj.sagepub.com.
  •  
6.
  • Varney, Michael D., et al. (author)
  • HLA DPA1, DPB1 Alleles and Haplotypes Contribute to the Risk Associated With Type 1 Diabetes Analysis of the Type 1 Diabetes Genetics Consortium Families
  • 2010
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 59:8, s. 2055-2062
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE-To determine the relative risk associated with DPA1 and DPB1 alleles and haplotypes in type I diabetes. RESEARCH DESIGN AND METHODS-The frequency of DPA1 and DPB1 alleles and haplotypes in type I diabetic patients was compared to the family based control frequency in 1,771 families directly and conditional on FILA (B)-DRB1-DQA1-DQB1 linkage disequilibrium. A relative predispositional analysis (RPA) was performed in the presence or absence of the primary HLA DR-DQ associations and the contribution of DP haplotype to individual DR-DQ haplotype risks examined. RESULTS-Eight DPAI and thirty-eight DPB1 alleles forming seventy-four DPA1-DPB1 haplotypes were observed, nineteen DPB1 alleles were associated with multiple DPA1 alleles Following both analyses, type I diabetes susceptibility was significantly associated with DPB1*0301 (DPA1*0103-DPB1*0301) and protection with DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 but not DPA1*0201-DPB1*0101. In addition, DPB1*0202 (DPA1*0103-DPB1*0202) and DPB1*0201 (DPA1*0103-DPB1*0201) were significantly associated with susceptibility in the presence of the high risk and protective DR-DQ haplotypes Three associations (DPB1*0301, *0402, and *0202) remained statistically significant when only the extended HLA-A1-B8-DR3 haplotype was considered, suggesting that DPB1 alone may delineate the risk associated with this otherwise conserved haplotype CONCLUSIONS-HLA DP allelic and haplotypic diversity contributes significantly to the risk for type I diabetes; DPB1*0301 (DPA1*0103-DPB1*0301) is associated with susceptibility and DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 with protection Additional evidence is presented for the susceptibility association of DPB1*0202 (DPA1*0103-DPB1*0202) and for a contributory role of individual amino acids and DPA1 or a gene in linkage disequilibrium in DR3-DPB1*0101 positive haplotypes Diabetes 59:2055-2062, 2010
  •  
7.
  •  
8.
  • Jung, Christian, et al. (author)
  • A comparison of very old patients admitted to intensive care unit after acute versus elective surgery or intervention
  • 2019
  • In: Journal of critical care. - : W B SAUNDERS CO-ELSEVIER INC. - 0883-9441 .- 1557-8615. ; 52, s. 141-148
  • Journal article (peer-reviewed)abstract
    • Background: We aimed to evaluate differences in outcome between patients admitted to intensive care unit (ICU) after elective versus acute surgery in a multinational cohort of very old patients (80 years; VIP). Predictors of mortality, with special emphasis on frailty, were assessed.Methods: In total, 5063 VIPs were induded in this analysis, 922 were admitted after elective surgery or intervention, 4141 acutely, with 402 after acute surgery. Differences were calculated using Mann-Whitney-U test and Wilcoxon test. Univariate and multivariable logistic regression were used to assess associations with mortality.Results: Compared patients admitted after acute surgery, patients admitted after elective surgery suffered less often from frailty as defined as CFS (28% vs 46%; p < 0.001), evidenced lower SOFA scores (4 +/- 5 vs 7 +/- 7; p < 0.001). Presence of frailty (CFS >4) was associated with significantly increased mortality both in elective surgery patients (7% vs 12%; p = 0.01), in acute surgery (7% vs 12%; p = 0.02).Conclusions: VIPs admitted to ICU after elective surgery evidenced favorable outcome over patients after acute surgery even after correction for relevant confounders. Frailty might be used to guide clinicians in risk stratification in both patients admitted after elective and acute surgery. 
  •  
9.
  • Tait, Brian D, et al. (author)
  • Consensus Guidelines on the Testing and Clinical Management Issues Associated With HLA and Non-HLA Antibodies in Transplantation.
  • 2013
  • In: Transplantation. - 1534-6080. ; 95:1, s. 19-47
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The introduction of solid-phase immunoassay (SPI) technology for the detection and characterization of human leukocyte antigen (HLA) antibodies in transplantation while providing greater sensitivity than was obtainable by complement-dependent lymphocytotoxicity (CDC) assays has resulted in a new paradigm with respect to the interpretation of donor-specific antibodies (DSA). Although the SPI assay performed on the Luminex instrument (hereafter referred to as the Luminex assay), in particular, has permitted the detection of antibodies not detectable by CDC, the clinical significance of these antibodies is incompletely understood. Nevertheless, the detection of these antibodies has led to changes in the clinical management of sensitized patients. In addition, SPI testing raises technical issues that require resolution and careful consideration when interpreting antibody results. METHODS: With this background, The Transplantation Society convened a group of laboratory and clinical experts in the field of transplantation to prepare a consensus report and make recommendations on the use of this new technology based on both published evidence and expert opinion. Three working groups were formed to address (a) the technical issues with respect to the use of this technology, (b) the interpretation of pretransplantation antibody testing in the context of various clinical settings and organ transplant types (kidney, heart, lung, liver, pancreas, intestinal, and islet cells), and (c) the application of antibody testing in the posttransplantation setting. The three groups were established in November 2011 and convened for a "Consensus Conference on Antibodies in Transplantation" in Rome, Italy, in May 2012. The deliberations of the three groups meeting independently and then together are the bases for this report. RESULTS: A comprehensive list of recommendations was prepared by each group. A summary of the key recommendations follows. Technical Group: (a) SPI must be used for the detection of pretransplantation HLA antibodies in solid organ transplant recipients and, in particular, the use of the single-antigen bead assay to detect antibodies to HLA loci, such as Cw, DQA, DPA, and DPB, which are not readily detected by other methods. (b) The use of SPI for antibody detection should be supplemented with cell-based assays to examine the correlations between the two types of assays and to establish the likelihood of a positive crossmatch (XM). (c) There must be an awareness of the technical factors that can influence the results and their clinical interpretation when using the Luminex bead technology, such as variation in antigen density and the presence of denatured antigen on the beads. Pretransplantation Group: (a) Risk categories should be established based on the antibody and the XM results obtained. (b) DSA detected by CDC and a positive XM should be avoided due to their strong association with antibody-mediated rejection and graft loss. (c) A renal transplantation can be performed in the absence of a prospective XM if single-antigen bead screening for antibodies to all class I and II HLA loci is negative. This decision, however, needs to be taken in agreement with local clinical programs and the relevant regulatory bodies. (d) The presence of DSA HLA antibodies should be avoided in heart and lung transplantation and considered a risk factor for liver, intestinal, and islet cell transplantation. Posttransplantation Group: (a) High-risk patients (i.e., desensitized or DSA positive/XM negative) should be monitored by measurement of DSA and protocol biopsies in the first 3 months after transplantation. (b) Intermediate-risk patients (history of DSA but currently negative) should be monitored for DSA within the first month. If DSA is present, a biopsy should be performed. (c) Low-risk patients (nonsensitized first transplantation) should be screened for DSA at least once 3 to 12 months after transplantation. If DSA is detected, a biopsy should be performed. In all three categories, the recommendations for subsequent treatment are based on the biopsy results. CONCLUSIONS: A comprehensive list of recommendations is provided covering the technical and pretransplantation and posttransplantation monitoring of HLA antibodies in solid organ transplantation. The recommendations are intended to provide state-of-the-art guidance in the use and clinical application of recently developed methods for HLA antibody detection when used in conjunction with traditional methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view