SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Takata Naoki 1979 ) "

Sökning: WFRF:(Takata Naoki 1979 )

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edwards, Kieron D., et al. (författare)
  • Circadian clock components control daily growth activities by modulating cytokinin levels and cell division-associated gene expression in Populus trees
  • 2018
  • Ingår i: Plant, Cell and Environment. - : John Wiley & Sons. - 0140-7791 .- 1365-3040. ; 41:6, s. 1468-1482
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees are carbon dioxide sinks and major producers of terrestrial biomass with distinct seasonal growth patterns. Circadian clocks enable the coordination of physiological and biochemical temporal activities, optimally regulating multiple traits including growth. To dissect the clock's role in growth, we analysed Populus tremula x P. tremuloides trees with impaired clock function due to down-regulation of central clock components. late elongated hypocotyl (lhy-10) trees, in which expression of LHY1 and LHY2 is reduced by RNAi, have a short free-running period and show disrupted temporal regulation of gene expression and reduced growth, producing 30-40% less biomass than wild-type trees. Genes important in growth regulation were expressed with an earlier phase in lhy-10, and CYCLIN D3 expression was misaligned and arrhythmic. Levels of cytokinins were lower in lhy-10 trees, which also showed a change in the time of peak expression of genes associated with cell division and growth. However, auxin levels were not altered in lhy-10 trees, and the size of the lignification zone in the stem showed a relative increase. The reduced growth rate and anatomical features of lhy-10 trees were mainly caused by misregulation of cell division, which may have resulted from impaired clock function.
  •  
2.
  • Jurca, Manuela, et al. (författare)
  • ZEITLUPE Promotes ABA-Induced Stomatal Closure in Arabidopsis and Populus
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants balance water availability with gas exchange and photosynthesis by controlling stomatal aperture. This control is regulated in part by the circadian clock, but it remains unclear how signalling pathways of daily rhythms are integrated into stress responses. The serine/threonine protein kinase OPEN STOMATA 1 (OST1) contributes to the regulation of stomatal closure via activation of S-type anion channels. OST1 also mediates gene regulation in response to ABA/drought stress. We show that ZEITLUPE (ZTL), a blue light photoreceptor and clock component, also regulates ABA-induced stomatal closure in Arabidopsis thaliana, establishing a link between clock and ABA-signalling pathways. ZTL sustains expression of OST1 and ABA-signalling genes. Stomatal closure in response to ABA is reduced in ztl mutants, which maintain wider stomatal apertures and show higher rates of gas exchange and water loss than wild-type plants. Detached rosette leaf assays revealed a stronger water loss phenotype in ztl-3, ost1-3 double mutants, indicating that ZTL and OST1 contributed synergistically to the control of stomatal aperture. Experimental studies of Populus sp., revealed that ZTL regulated the circadian clock and stomata, indicating ZTL function was similar in these trees and Arabidopsis. PSEUDO-RESPONSE REGULATOR 5 (PRR5), a known target of ZTL, affects ABA-induced responses, including stomatal regulation. Like ZTL, PRR5 interacted physically with OST1 and contributed to the integration of ABA responses with circadian clock signalling. This suggests a novel mechanism whereby the PRR proteins—which are expressed from dawn to dusk—interact with OST1 to mediate ABA-dependent plant responses to reduce water loss in time of stress.
  •  
3.
  • Takata, Naoki, 1979-, et al. (författare)
  • Phylogenetic footprint of the plant clock system in angiosperms : evolutionary processes of Pseudo-Response Regulators
  • 2010
  • Ingår i: BMC Evolutionary Biology. - : BMC Evolutionary Biology. - 1471-2148. ; 10, s. 126-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. Results: In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Conclusions: Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy