SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tallmark Bo) "

Sökning: WFRF:(Tallmark Bo)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Häubner, Norbert, et al. (författare)
  • Phytoplankton biomass controls tocopherol concentrations in Baltic Sea zooplankton
  • Ingår i: Marine Ecology Progress Series. - 0171-8630 .- 1616-1599.
  • Tidskriftsartikel (refereegranskat)abstract
    • Nearly all organisms are constantly exposed to oxidative threat, because every reaction where oxygen is involved gives rise to oxidants. Efficient protection is provided by antioxidants. Vitamin E (tocopherol) is an essential plant-derived antioxidant and poorly studied so far in marine food webs. In 2004 and 2005 eight offshore expeditions were conducted in the Baltic Sea to explore the dynamics of α-tocopherol in the pelagic food web. In order to analyze tocopherol production and transition to the next food web level, two plankton size classes were sampled; <100 µm (dominated by phytoplankton) and >200 µm (dominated by calanoid copepods). HPLC analysis revealed lowest values of α-tocopherol per L seawater in March in both size classes and highest in May for <100 µm (31.5 ng L-1) and August for >200 µm (1.3 ng L-1). No consistent seasonal pattern could be observed in α-tocopherol per unit biomass for the zooplankton. Concentrations ranged in <100 µm from 0.05 to 0.10 ng µg C-1 and in >200 µm from 0.05 to 0.11 ng µg C-1.  Partial least square regression (PLS) revealed nutrional status and species composition of the phytoplankton biomass as driving factors of α-tocopherol production in phytoplankton. Abiotic factors, as depth and temperature were only of significant influence in May. In zooplankton, the α-tocopherol concentration was negatively associated with phytoplankton biomass in May. Therefore we concluded that assimilation efficiency of zooplankton in combination with high phytoplankton biomass is the bottle-neck in tocopherol transport from phytoplankton to higher levels in the food web.
  •  
2.
  • Nie, Xiang-Ping, et al. (författare)
  • Prey diversity and prey stomach contents affect astaxanthin levels in piscivorous fish
  • Ingår i: Limnology and Oceanography. - 0024-3590 .- 1939-5590.
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed astaxanthin concentrations and the composition of geometrical (E/Z) astaxanthin isomers in 631 tissue samples from the four chief fish species in the pelagic zone of the brackish Baltic Sea. Salmon and herring showed signs of astaxanthin deficiency, but cod and sprat did not. The isomers were distributed selectively in fish tissues, with highest proportions of all-E-astaxanthin in salmon gonads (71%) and lowest in herring gonads (19%). We discovered that the clupeids are no ideal prey for salmon and cod with respect to their high whole-body concentrations of astaxanthin Z-isomers, which have low bioavailability for salmon and cod. The salmon in the Baltic Sea is entirely dependent on herring and sprat for food intake while cod feeds on a more diverse diet, including crustaceans. This explains the normal low astaxanthin levels in the salmon in the Baltic Sea. Observed decreases in astaxanthin levels in the Baltic salmon during the last 50 years, which are related to a reproductional disturbance (M74 syndrome), can be explained by the here described poor quality of herring as astaxanthin source in combination with recorded changes in the feeding ecology of the Baltic salmon with less sprat and more herring in the diet today. Herring is inferior to sprat as astaxanthin source, especially in autumn when a salmon or cod obtains four times more bioavailable all-E-astaxanthin (by weight) from sprat than from herring. The Baltic herring is starving more than the sprat as a result of competition between the clupeids though fishing mortality and recruitment problems of the cod, their major predator during the last decades. Therefore, less crustacean astaxanthin (mainly all-E) is transferred directly to piscivorous fish from herring stomachs than from sprat stomachs.
  •  
3.
  • Nie, Xiang-Ping, et al. (författare)
  • Why Baltic herring and sprat are weak conduits for astaxanthin from zooplankton to piscivorous fish
  • 2011
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 56:3, s. 1155-1167
  • Tidskriftsartikel (refereegranskat)abstract
    • Atlantic salmon living in the brackish Baltic Sea have lower muscle pigmentation than populations elsewhere. The pigment in question is the antioxidant and vitamin A precursor astaxanthin, which is synthesized by crustaceans from algal carotenoids. Baltic salmon feed nearly exclusively on the clupeids sprat and herring. To evaluate astaxanthin availability to salmon we assessed astaxanthin levels and isomeric composition in their prey fish. We also analyzed astaxanthin dynamics in the dominant piscivorous fish in the Baltic Sea, the Atlantic cod. The geometrical E-(trans-) and Z-(cis-) isomers were distributed selectively in fish tissues, with highest E : Z ratios in salmon gonads (82 : 18) and lowest in herring gonads (24 : 76). Sprat and herring are not ideal prey with respect to their high whole-body concentrations of Z-isomers, which have low bioavailability for salmon and cod. These Z-isomers predominantly accumulate in the clupeid gonads. A crucial mechanism for the transport of astaxanthin from clupeids to piscivores is the direct transfer of crustacean astaxanthin (mainly all-E) from the clupeid stomachs. Low stomach astaxanthin content in clupeids decreases total astaxanthin transfer to higher trophic levels. In autumn, herring stomachs (including contents) had 12.5 times lower astaxanthin concentrations than sprat stomachs, and herring had 2.8 times less whole-body all-E-astaxanthin (by weight) than sprat. These results confirm recent reports of starvation in the Baltic herring, which may further decrease astaxanthin levels in the Baltic salmon. Cod did not have lower astaxanthin levels than their Atlantic counterpart, which may be attributed to their lower need for astaxanthin and higher food diversity.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy